5.3.44 Problems 4301 to 4400

Table 5.371: Second order ode

#

ODE

Mathematica

Maple

13681

\[ {}y^{\prime \prime }+\lambda y = 0 \]

13682

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

13683

\[ {}y^{\prime }+x y^{\prime \prime }+\frac {\lambda y}{x} = 0 \]

13684

\[ {}2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime }+\frac {\lambda y}{x^{2}+1} = 0 \]

13685

\[ {}-\frac {6 y^{\prime } x}{\left (3 x^{2}+1\right )^{2}}+\frac {y^{\prime \prime }}{3 x^{2}+1}+\lambda \left (3 x^{2}+1\right ) y = 0 \]

13698

\[ {}x^{\prime \prime }+x^{4} x^{\prime }-x^{\prime }+x = 0 \]

13699

\[ {}x^{\prime \prime }+x^{\prime }+{x^{\prime }}^{3}+x = 0 \]

13700

\[ {}x^{\prime \prime }+\left (x^{4}+x^{2}\right ) x^{\prime }+x^{3}+x = 0 \]

13701

\[ {}x^{\prime \prime }+\left (5 x^{4}-6 x^{2}\right ) x^{\prime }+x^{3} = 0 \]

13702

\[ {}x^{\prime \prime }+\left (x^{2}+1\right ) x^{\prime }+x^{3} = 0 \]

13750

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

13751

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

13752

\[ {}z^{\prime \prime }-4 z^{\prime }+13 z = 0 \]

13753

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13754

\[ {}y^{\prime \prime }-4 y^{\prime } = 0 \]

13755

\[ {}\theta ^{\prime \prime }+4 \theta = 0 \]

13756

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

13757

\[ {}2 z^{\prime \prime }+7 z^{\prime }-4 z = 0 \]

13758

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

13759

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = 0 \]

13760

\[ {}4 x^{\prime \prime }-20 x^{\prime }+21 x = 0 \]

13761

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 0 \]

13762

\[ {}y^{\prime \prime }-4 y = 0 \]

13763

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13764

\[ {}y^{\prime \prime }+\omega ^{2} y = 0 \]

13765

\[ {}x^{\prime \prime }-4 x = t^{2} \]

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

13767

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

13768

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

13769

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

13770

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

13771

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

13772

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

13773

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

13774

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

13775

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

13776

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

13777

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

13778

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]

13779

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]

13784

\[ {}t^{2} y^{\prime \prime }-\left (t^{2}+2 t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

13785

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

13786

\[ {}\left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right ) = 0 \]

13787

\[ {}\left (-t^{2}+t \right ) x^{\prime \prime }+\left (-t^{2}+2\right ) x^{\prime }+\left (2-t \right ) x = 0 \]

13788

\[ {}y^{\prime \prime }-x y^{\prime }+y = 0 \]

13789

\[ {}\tan \left (t \right ) x^{\prime \prime }-3 x^{\prime }+\left (\tan \left (t \right )+3 \cot \left (t \right )\right ) x = 0 \]

13790

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

13791

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13792

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

13793

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

13795

\[ {}\left (\tan \left (x \right )^{2}-1\right ) y^{\prime \prime }-4 \tan \left (x \right )^{3} y^{\prime }+2 y \sec \left (x \right )^{4} = \left (\tan \left (x \right )^{2}-1\right ) \left (1-2 \sin \left (x \right )^{2}\right ) \]

13796

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

13797

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

13798

\[ {}t^{2} x^{\prime \prime }-5 t x^{\prime }+10 x = 0 \]

13799

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }-x = 0 \]

13800

\[ {}x^{2} z^{\prime \prime }+3 x z^{\prime }+4 z = 0 \]

13801

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

13802

\[ {}4 t^{2} x^{\prime \prime }+8 t x^{\prime }+5 x = 0 \]

13803

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+5 y = 0 \]

13804

\[ {}3 x^{2} z^{\prime \prime }+5 x z^{\prime }-z = 0 \]

13805

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+13 x = 0 \]

13806

\[ {}a y^{\prime \prime }+\left (b -a \right ) y^{\prime }+c y = 0 \]

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

13904

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

13906

\[ {}y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

13908

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13909

\[ {}x^{3} x^{\prime \prime }+1 = 0 \]

13915

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

13916

\[ {}y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13917

\[ {}y^{\prime \prime } = 3 \sqrt {y} \]

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

13919

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

13920

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

13921

\[ {}y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

13926

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13927

\[ {}m x^{\prime \prime } = f \left (x\right ) \]

13928

\[ {}m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

13931

\[ {}\left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13932

\[ {}x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

13936

\[ {}x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13940

\[ {}x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

13942

\[ {}y^{\prime \prime } = 2 y^{3} \]

13943

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13958

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

13960

\[ {}y^{\prime \prime }+y y^{\prime } = 1 \]

13970

\[ {}2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13972

\[ {}x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13973

\[ {}y^{\prime \prime } = x^{2}+y \]

13977

\[ {}\sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]