5.4.37 Problems 3601 to 3700

Table 5.487: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

18322

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18453

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18457

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18487

\[ {}x^{\prime \prime }+\left (5 x^{4}-9 x^{2}\right ) x^{\prime }+x^{5} = 0 \]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

18517

\[ {}x^{\prime \prime }-5 x^{\prime }+6 x = 0 \]

18518

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

18519

\[ {}x^{\prime \prime }-4 x^{\prime }+5 x = 0 \]

18520

\[ {}x^{\prime \prime }+3 x^{\prime } = 0 \]

18521

\[ {}x^{\prime \prime }-3 x^{\prime }+2 x = 0 \]

18522

\[ {}x^{\prime \prime }+x = 0 \]

18523

\[ {}x^{\prime \prime }+2 x^{\prime }+x = 0 \]

18524

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

18531

\[ {}x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0 \]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

18534

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

18536

\[ {}v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}} \]

18538

\[ {}\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}} \]

18565

\[ {}\theta ^{\prime \prime } = -p^{2} \theta \]

18567

\[ {}y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k} \]

18568

\[ {}\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}} \]

18580

\[ {}\theta ^{\prime \prime }-p^{2} \theta = 0 \]

18581

\[ {}y^{\prime \prime }+y = 0 \]

18582

\[ {}y^{\prime \prime }+12 y = 7 y^{\prime } \]

18583

\[ {}r^{\prime \prime }-a^{2} r = 0 \]

18596

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right ) \]

18597

\[ {}y^{\prime \prime } = c \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

18599

\[ {}y^{\prime \prime } = -m^{2} y \]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18609

\[ {}y^{\prime \prime }-2 y y^{\prime } = 0 \]

18610

\[ {}y^{\prime \prime }-{y^{\prime }}^{2}-y {y^{\prime }}^{3} = 0 \]

18611

\[ {}\left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} = r y^{\prime \prime } \]

18613

\[ {}\left (1+y^{2}\right ) y^{\prime \prime }-2 y {y^{\prime }}^{2}-2 \left (1+y^{2}\right ) y^{\prime } = y^{2} \left (1+y^{2}\right ) \]

18615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

18655

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

18656

\[ {}y^{\prime \prime }+2 y^{\prime }-2 y = 0 \]

18683

\[ {}e y^{\prime \prime } = P \left (-y+a \right ) \]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

18700

\[ {}y^{\prime \prime } = -a^{2} y \]

18701

\[ {}y^{\prime \prime } = \frac {1}{y^{2}} \]

18702

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18726

\[ {}y^{\prime \prime }-k^{2} y = 0 \]

18867

\[ {}y^{\prime \prime }+3 y^{\prime }-54 y = 0 \]

18868

\[ {}y^{\prime \prime }-m^{2} y = 0 \]

18869

\[ {}2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

18870

\[ {}9 y^{\prime \prime }+18 y^{\prime }-16 y = 0 \]

18873

\[ {}y^{\prime \prime }+8 y^{\prime }+25 y = 0 \]

18931

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

18949

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

18952

\[ {}y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2} \]

18953

\[ {}x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0 \]

18957

\[ {}y^{\prime \prime }+a^{2} y = 0 \]

18958

\[ {}y^{\prime \prime } = \frac {1}{\sqrt {a y}} \]

18959

\[ {}y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0 \]

18960

\[ {}y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0 \]

18962

\[ {}y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18965

\[ {}y^{\prime \prime }-a {y^{\prime }}^{2} = 0 \]

18967

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right ) \]

18968

\[ {}y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0 \]

18973

\[ {}a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18982

\[ {}\left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 \left (x +y\right ) {y^{\prime }}^{2}+x y^{\prime }+y = 0 \]

18987

\[ {}{y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

18989

\[ {}y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0 \]

18991

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

18994

\[ {}y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0 \]

18998

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

18999

\[ {}a y^{\prime \prime } = y^{\prime } \]

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19006

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19009

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19014

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19021

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

19022

\[ {}y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

19023

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19024

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19026

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

19028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]