5.10.12 Problems 1101 to 1200

Table 5.795: System of differential equations

#

ODE

Mathematica

Maple

15836

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

15840

\[ {}[x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

15841

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

16648

\[ {}[x^{\prime }\left (t \right ) = 6, y^{\prime }\left (t \right ) = \cos \left (t \right )] \]

16649

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right ), y^{\prime }\left (t \right ) = 1] \]

16650

\[ {}[x^{\prime }\left (t \right ) = 0, y^{\prime }\left (t \right ) = -2 y \left (t \right )] \]

16651

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}, y^{\prime }\left (t \right ) = {\mathrm e}^{t}] \]

16652

\[ {}[x_{1}^{\prime }\left (t \right ) = -3 x_{1} \left (t \right ), x_{2}^{\prime }\left (t \right ) = 1] \]

16653

\[ {}[x_{1}^{\prime }\left (t \right ) = -x_{1} \left (t \right )+1, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )] \]

16654

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )] \]

16655

\[ {}[x^{\prime }\left (t \right ) = 8 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )] \]

16656

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

16657

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right )] \]

16658

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+1] \]

16659

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\sin \left (2 t \right )] \]

17229

\[ {}\left [x_{1}^{\prime }\left (t \right ) = -2 t x_{1} \left (t \right )^{2}, x_{2}^{\prime }\left (t \right ) = \frac {x_{2} \left (t \right )+t}{t}\right ] \]

17230

\[ {}[x_{1}^{\prime }\left (t \right ) = {\mathrm e}^{t -x_{1} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = 2 \,{\mathrm e}^{x_{1} \left (t \right )}] \]

17231

\[ {}\left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

17232

\[ {}\left [x_{1}^{\prime }\left (t \right ) = \frac {x_{1} \left (t \right )^{2}}{x_{2} \left (t \right )}, x_{2}^{\prime }\left (t \right ) = x_{2} \left (t \right )-x_{1} \left (t \right )\right ] \]

17233

\[ {}\left [x^{\prime }\left (t \right ) = \frac {{\mathrm e}^{-x \left (t \right )}}{t}, y^{\prime }\left (t \right ) = \frac {x \left (t \right ) {\mathrm e}^{-y \left (t \right )}}{t}\right ] \]

17234

\[ {}\left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ] \]

17235

\[ {}\left [x^{\prime }\left (t \right ) = \frac {t -y \left (t \right )}{-x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{-x \left (t \right )+y \left (t \right )}\right ] \]

17236

\[ {}\left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

17237

\[ {}[x^{\prime }\left (t \right ) = -9 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

17238

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )+t, y^{\prime }\left (t \right ) = x \left (t \right )-t] \]

17239

\[ {}[x^{\prime }\left (t \right )+3 x \left (t \right )+4 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )+5 y \left (t \right ) = 0] \]

17240

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-3 y \left (t \right )] \]

17241

\[ {}[4 x^{\prime }\left (t \right )-y^{\prime }\left (t \right )+3 x \left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )+y \left (t \right ) = \cos \left (t \right )] \]

17242

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+z \left (t \right )] \]

17243

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17244

\[ {}[x^{\prime \prime }\left (t \right ) = y \left (t \right ), y^{\prime \prime }\left (t \right ) = x \left (t \right )] \]

17245

\[ {}[x^{\prime \prime }\left (t \right )+y^{\prime }\left (t \right )+x \left (t \right ) = 0, x^{\prime }\left (t \right )+y^{\prime \prime }\left (t \right ) = 0] \]

17246

\[ {}[x^{\prime \prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

17247

\[ {}[x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

17248

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = 2 x \left (t \right ) y \left (t \right )] \]

17249

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {1}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

17250

\[ {}\left [x^{\prime }\left (t \right ) = \frac {x \left (t \right )}{y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )}\right ] \]

17251

\[ {}\left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )}{x \left (t \right )-y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{x \left (t \right )-y \left (t \right )}\right ] \]

17252

\[ {}[x^{\prime }\left (t \right ) = \sin \left (x \left (t \right )\right ) \cos \left (y \left (t \right )\right ), y^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right ) \sin \left (y \left (t \right )\right )] \]

17253

\[ {}\left [{\mathrm e}^{t} x^{\prime }\left (t \right ) = \frac {1}{y \left (t \right )}, {\mathrm e}^{t} y^{\prime }\left (t \right ) = \frac {1}{x \left (t \right )}\right ] \]

17254

\[ {}\left [x^{\prime }\left (t \right ) = \cos \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}+\sin \left (x \left (t \right )\right )^{2} \cos \left (y \left (t \right )\right )^{2}, y^{\prime }\left (t \right ) = -\frac {\sin \left (2 x \left (t \right )\right ) \sin \left (2 y \left (t \right )\right )}{2}\right ] \]

17255

\[ {}[x^{\prime }\left (t \right ) = 8 y \left (t \right )-x \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

17256

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )] \]

17257

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )] \]

17258

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 y \left (t \right )-2 x \left (t \right )] \]

17259

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

17260

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )] \]

17261

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )-z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )] \]

17262

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right ), z^{\prime }\left (t \right ) = y \left (t \right )-2 z \left (t \right )-3 x \left (t \right )] \]

17263

\[ {}[x^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = -{\mathrm e}^{2 t}, y^{\prime }\left (t \right )+3 x \left (t \right )-2 y \left (t \right ) = 6 \,{\mathrm e}^{2 t}] \]

17264

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-\cos \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )-2 x \left (t \right )+\cos \left (t \right )+\sin \left (t \right )] \]

17265

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )+\tan \left (t \right )^{2}-1, y^{\prime }\left (t \right ) = \tan \left (t \right )-x \left (t \right )] \]

17266

\[ {}\left [x^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+\frac {2}{{\mathrm e}^{t}-1}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+3 y \left (t \right )-\frac {3}{{\mathrm e}^{t}-1}\right ] \]

17267

\[ {}\left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+\frac {1}{\cos \left (t \right )}\right ] \]

17268

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+1] \]

17269

\[ {}[x^{\prime }\left (t \right ) = 3-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 t] \]

17270

\[ {}[x^{\prime }\left (t \right ) = -y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+\cos \left (t \right )] \]

17271

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-{\mathrm e}^{t}] \]

17272

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-5 y \left (t \right )+4 t -1, y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )+t] \]

17273

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right )-x \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+{\mathrm e}^{t}] \]

17274

\[ {}[x^{\prime }\left (t \right )+y \left (t \right ) = t^{2}, -x \left (t \right )+y^{\prime }\left (t \right ) = t] \]

17275

\[ {}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+y \left (t \right ) = {\mathrm e}^{-t}, 2 x^{\prime }\left (t \right )+y^{\prime }\left (t \right )+2 y \left (t \right ) = \sin \left (t \right )] \]

17276

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-2 z \left (t \right )+2-t, y^{\prime }\left (t \right ) = -x \left (t \right )+1, z^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-z \left (t \right )+1-t] \]

17277

\[ {}[x^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right ) = 2 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = 1, z^{\prime }\left (t \right )+z \left (t \right ) = 1] \]

17278

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

17279

\[ {}[x^{\prime }\left (t \right ) = 6 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )] \]

17280

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-4 y \left (t \right )+1, y^{\prime }\left (t \right ) = -x \left (t \right )+5 y \left (t \right )] \]

17281

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )+{\mathrm e}^{t}, y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )-{\mathrm e}^{t}] \]

17282

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )+\cos \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )+\sin \left (t \right )] \]

17456

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+4] \]

17457

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+\sin \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )-\cos \left (t \right )] \]

17458

\[ {}[x^{\prime }\left (t \right ) = -2 t x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

17459

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-3] \]

17460

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right )] \]

17461

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+t y \left (t \right ), y^{\prime }\left (t \right ) = t x \left (t \right )-y \left (t \right )] \]

17462

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

17463

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+3 y \left (t \right )] \]

17464

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17465

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )-y \left (t \right )] \]

17466

\[ {}[x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )+2 \sin \left (t \right )] \]

17467

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-4 y \left (t \right )+2 t, y^{\prime }\left (t \right ) = x \left (t \right )-3 y \left (t \right )-3] \]

17468

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1, y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3] \]

17469

\[ {}[x^{\prime }\left (t \right ) = -x \left (t \right )-4 y \left (t \right )-4, y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-6] \]

17470

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}+8, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )-\frac {23}{2}\right ] \]

17471

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11, y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35] \]

17472

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-3, y^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )+1] \]

17473

\[ {}[x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )-35, y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )-11] \]

17474

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-2 y \left (t \right )] \]

17475

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]

17476

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )] \]

17477

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )] \]

17478

\[ {}[x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )-6 y \left (t \right )] \]

17479

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right )] \]

17480

\[ {}\left [x^{\prime }\left (t \right ) = \frac {5 x \left (t \right )}{4}+\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {3 x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

17481

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {3 x \left (t \right )}{4}-\frac {7 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{4}+\frac {5 y \left (t \right )}{4}\right ] \]

17482

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{4}-\frac {3 y \left (t \right )}{4}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )}{2}+y \left (t \right )\right ] \]

17483

\[ {}[x^{\prime }\left (t \right ) = 5 x \left (t \right )-y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right )] \]

17484

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right )] \]

17485

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )+6 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

17486

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )-2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-4 y \left (t \right )] \]