5.14.3 Problems 201 to 300

Table 5.853: First order ode non-linear in derivative

#

ODE

Mathematica

Maple

5455

\[ {}x {y^{\prime }}^{2}+\left (1-x \right ) y y^{\prime }-y^{2} = 0 \]

5456

\[ {}x {y^{\prime }}^{2}+\left (1-x^{2} y\right ) y^{\prime }-x y = 0 \]

5457

\[ {}\left (1+x \right ) {y^{\prime }}^{2} = y \]

5458

\[ {}\left (1+x \right ) {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

5459

\[ {}\left (a -x \right ) {y^{\prime }}^{2}+y y^{\prime }-b = 0 \]

5460

\[ {}2 x {y^{\prime }}^{2}+\left (2 x -y\right ) y^{\prime }+1-y = 0 \]

5461

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

5462

\[ {}\left (1+3 x \right ) {y^{\prime }}^{2}-3 \left (y+2\right ) y^{\prime }+9 = 0 \]

5463

\[ {}\left (3 x +5\right ) {y^{\prime }}^{2}-\left (3+3 y\right ) y^{\prime }+y = 0 \]

5464

\[ {}4 x {y^{\prime }}^{2} = \left (a -3 x \right )^{2} \]

5465

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

5466

\[ {}4 x {y^{\prime }}^{2}-3 y y^{\prime }+3 = 0 \]

5467

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime } = 1 \]

5468

\[ {}4 x {y^{\prime }}^{2}+4 y y^{\prime }-y^{4} = 0 \]

5469

\[ {}4 \left (2-x \right ) {y^{\prime }}^{2}+1 = 0 \]

5470

\[ {}16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

5471

\[ {}x^{2} {y^{\prime }}^{2} = a^{2} \]

5472

\[ {}x^{2} {y^{\prime }}^{2} = y^{2} \]

5473

\[ {}x^{2} {y^{\prime }}^{2}+x^{2}-y^{2} = 0 \]

5474

\[ {}x^{2} {y^{\prime }}^{2} = \left (x -y\right )^{2} \]

5475

\[ {}x^{2} {y^{\prime }}^{2}+y^{2}-y^{4} = 0 \]

5476

\[ {}x^{2} {y^{\prime }}^{2}-x y^{\prime }+y \left (1-y\right ) = 0 \]

5477

\[ {}x^{2} {y^{\prime }}^{2}+2 a x y^{\prime }+a^{2}+x^{2}-2 a y = 0 \]

5478

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x +y \left (1+y\right ) = 0 \]

5479

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-x^{4}+\left (-x^{2}+1\right ) y^{2} = 0 \]

5480

\[ {}x^{2} {y^{\prime }}^{2}-\left (1+2 x y\right ) y^{\prime }+1+y^{2} = 0 \]

5481

\[ {}x^{2} {y^{\prime }}^{2}-\left (a +2 x y\right ) y^{\prime }+y^{2} = 0 \]

5482

\[ {}x^{2} {y^{\prime }}^{2}-x \left (x -2 y\right ) y^{\prime }+y^{2} = 0 \]

5483

\[ {}x^{2} {y^{\prime }}^{2}+2 x \left (y+2 x \right ) y^{\prime }-4 a +y^{2} = 0 \]

5484

\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{3}-2 y\right ) y^{\prime }-\left (2 x^{3}-y\right ) y = 0 \]

5485

\[ {}x^{2} {y^{\prime }}^{2}+3 x y y^{\prime }+2 y^{2} = 0 \]

5486

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+x^{3}+2 y^{2} = 0 \]

5487

\[ {}x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }-5 y^{2} = 0 \]

5488

\[ {}x^{2} {y^{\prime }}^{2}-4 x \left (y+2\right ) y^{\prime }+4 y \left (y+2\right ) = 0 \]

5489

\[ {}x^{2} {y^{\prime }}^{2}-5 x y y^{\prime }+6 y^{2} = 0 \]

5490

\[ {}x^{2} {y^{\prime }}^{2}+x \left (x^{2}+x y-2 y\right ) y^{\prime }+\left (1-x \right ) \left (x^{2}-y\right ) y = 0 \]

5491

\[ {}x^{2} {y^{\prime }}^{2}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \]

5492

\[ {}x^{2} {y^{\prime }}^{2}+\left (2 x -y\right ) y y^{\prime }+y^{2} = 0 \]

5493

\[ {}x^{2} {y^{\prime }}^{2}+\left (a +b \,x^{2} y^{3}\right ) y^{\prime }+a b y^{3} = 0 \]

5494

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2} = 1-y^{2} \]

5495

\[ {}\left (-x^{2}+1\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+4 x^{2} = 0 \]

5496

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

5497

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+b^{2} = 0 \]

5498

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = b^{2} \]

5499

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2} = x^{2} \]

5500

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

5501

\[ {}\left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-y^{2} = 0 \]

5502

\[ {}\left (a^{2}+x^{2}\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+b +y^{2} = 0 \]

5503

\[ {}4 x^{2} {y^{\prime }}^{2}-4 x y y^{\prime } = 8 x^{3}-y^{2} \]

5504

\[ {}a \,x^{2} {y^{\prime }}^{2}-2 a x y y^{\prime }+a \left (1-a \right ) x^{2}+y^{2} = 0 \]

5505

\[ {}\left (-a^{2}+1\right ) x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }-a^{2} x^{2}+y^{2} = 0 \]

5506

\[ {}x^{3} {y^{\prime }}^{2} = a \]

5507

\[ {}x^{3} {y^{\prime }}^{2}+x y^{\prime }-y = 0 \]

5508

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+a = 0 \]

5509

\[ {}x \left (-x^{2}+1\right ) {y^{\prime }}^{2}-2 \left (-x^{2}+1\right ) y y^{\prime }+x \left (1-y^{2}\right ) = 0 \]

5510

\[ {}4 x \left (a -x \right ) \left (-x +b \right ) {y^{\prime }}^{2} = \left (a b -2 x \left (a +b \right )+2 x^{2}\right )^{2} \]

5511

\[ {}x^{4} {y^{\prime }}^{2}-x y^{\prime }-y = 0 \]

5512

\[ {}x^{4} {y^{\prime }}^{2}+2 x^{3} y y^{\prime }-4 = 0 \]

5513

\[ {}x^{4} {y^{\prime }}^{2}+y^{2} y^{\prime } x -y^{3} = 0 \]

5514

\[ {}x^{2} \left (a^{2}-x^{2}\right ) {y^{\prime }}^{2}+1 = 0 \]

5515

\[ {}3 x^{4} {y^{\prime }}^{2}-x y-y = 0 \]

5516

\[ {}4 x^{5} {y^{\prime }}^{2}+12 x^{4} y y^{\prime }+9 = 0 \]

5517

\[ {}x^{6} {y^{\prime }}^{2}-2 x y^{\prime }-4 y = 0 \]

5518

\[ {}x^{8} {y^{\prime }}^{2}+3 x y^{\prime }+9 y = 0 \]

5519

\[ {}y {y^{\prime }}^{2} = a \]

5520

\[ {}y {y^{\prime }}^{2} = x \,a^{2} \]

5521

\[ {}y {y^{\prime }}^{2} = {\mathrm e}^{2 x} \]

5522

\[ {}y {y^{\prime }}^{2}+2 a x y^{\prime }-a y = 0 \]

5523

\[ {}y {y^{\prime }}^{2}-4 a^{2} x y^{\prime }+a^{2} y = 0 \]

5524

\[ {}y {y^{\prime }}^{2}+a x y^{\prime }+b y = 0 \]

5525

\[ {}y {y^{\prime }}^{2}-\left (-2 b x +a \right ) y^{\prime }-b y = 0 \]

5526

\[ {}y {y^{\prime }}^{2}+x^{3} y^{\prime }-x^{2} y = 0 \]

5527

\[ {}y {y^{\prime }}^{2}+\left (x -y\right ) y^{\prime }-x = 0 \]

5528

\[ {}y {y^{\prime }}^{2}-\left (x +y\right ) y^{\prime }+y = 0 \]

5529

\[ {}y {y^{\prime }}^{2}-\left (x y+1\right ) y^{\prime }+x = 0 \]

5530

\[ {}y {y^{\prime }}^{2}+\left (x -y^{2}\right ) y^{\prime }-x y = 0 \]

5531

\[ {}y {y^{\prime }}^{2}+y = a \]

5532

\[ {}\left (x +y\right ) {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

5533

\[ {}\left (2 x -y\right ) {y^{\prime }}^{2}-2 \left (1-x \right ) y^{\prime }+2-y = 0 \]

5534

\[ {}2 y {y^{\prime }}^{2}+\left (5-4 x \right ) y^{\prime }+2 y = 0 \]

5535

\[ {}9 y {y^{\prime }}^{2}+4 x^{3} y^{\prime }-4 x^{2} y = 0 \]

5536

\[ {}\left (1-a y\right ) {y^{\prime }}^{2} = a y \]

5537

\[ {}\left (x^{2}-a y\right ) {y^{\prime }}^{2}-2 x y y^{\prime } = 0 \]

5538

\[ {}x y {y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+1 = 0 \]

5539

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}+y^{2}\right ) y^{\prime }+x y = 0 \]

5540

\[ {}x y {y^{\prime }}^{2}+\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

5541

\[ {}x y {y^{\prime }}^{2}-\left (x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

5542

\[ {}x y {y^{\prime }}^{2}+\left (a +x^{2}-y^{2}\right ) y^{\prime }-x y = 0 \]

5543

\[ {}x y {y^{\prime }}^{2}-\left (a -b \,x^{2}+y^{2}\right ) y^{\prime }-b x y = 0 \]

5544

\[ {}x y {y^{\prime }}^{2}+\left (3 x^{2}-2 y^{2}\right ) y^{\prime }-6 x y = 0 \]

5545

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}-2 x y y^{\prime }-2 x y+y^{2} = 0 \]

5546

\[ {}x \left (x -2 y\right ) {y^{\prime }}^{2}+6 x y y^{\prime }-2 x y+y^{2} = 0 \]

5547

\[ {}y^{2} {y^{\prime }}^{2} = a^{2} \]

5548

\[ {}y^{2} {y^{\prime }}^{2}-a^{2}+y^{2} = 0 \]

5549

\[ {}y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y = 0 \]

5550

\[ {}y^{2} {y^{\prime }}^{2}-6 x^{3} y^{\prime }+4 x^{2} y = 0 \]

5551

\[ {}y^{2} {y^{\prime }}^{2}-4 a y y^{\prime }+4 a^{2}-4 a x +y^{2} = 0 \]

5552

\[ {}y^{2} {y^{\prime }}^{2}-\left (1+x \right ) y y^{\prime }+x = 0 \]

5553

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+x^{2} = 0 \]

5554

\[ {}y^{2} {y^{\prime }}^{2}+2 x y y^{\prime }+a -y^{2} = 0 \]