5.20.31 Problems 3001 to 3100

Table 5.967: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

16432

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \sec \left (t \right )^{2} \]

16433

\[ {}y^{\prime \prime \prime }+y^{\prime } = \sec \left (t \right ) \]

16434

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = \cos \left (t \right ) \]

16435

\[ {}y^{\prime \prime \prime \prime }+y^{\prime \prime } = t \]

16558

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16559

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16560

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16563

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

16564

\[ {}6 y^{\prime \prime }+5 y^{\prime }-4 y = 0 \]

16565

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16566

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 0 \]

16567

\[ {}y^{\prime \prime }-10 y^{\prime }+34 y = 0 \]

16568

\[ {}2 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

16569

\[ {}15 y^{\prime \prime }-11 y^{\prime }+2 y = 0 \]

16570

\[ {}20 y^{\prime \prime }+y^{\prime }-y = 0 \]

16571

\[ {}12 y^{\prime \prime }+8 y^{\prime }+y = 0 \]

16572

\[ {}2 y^{\prime \prime \prime }+3 y^{\prime \prime }+y^{\prime } = 0 \]

16573

\[ {}9 y^{\prime \prime \prime }+36 y^{\prime \prime }+40 y^{\prime } = 0 \]

16574

\[ {}9 y^{\prime \prime \prime }+12 y^{\prime \prime }+13 y^{\prime } = 0 \]

16575

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = -t \]

16576

\[ {}y^{\prime \prime }+5 y^{\prime } = 5 t^{2} \]

16577

\[ {}y^{\prime \prime }-4 y^{\prime } = -3 \sin \left (t \right ) \]

16578

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 t \right ) \]

16579

\[ {}y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

16580

\[ {}y^{\prime \prime }-2 y^{\prime } = \frac {1}{{\mathrm e}^{2 t}+1} \]

16581

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = -4 \,{\mathrm e}^{-2 t} \]

16582

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 3 \,{\mathrm e}^{-2 t} \]

16583

\[ {}y^{\prime \prime }+9 y^{\prime }+20 y = -2 t \,{\mathrm e}^{t} \]

16584

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 t^{2} {\mathrm e}^{-4 t} \]

16585

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }+5 y = {\mathrm e}^{t} \]

16586

\[ {}y^{\prime \prime \prime }-12 y^{\prime }-16 y = {\mathrm e}^{4 t}-{\mathrm e}^{-2 t} \]

16587

\[ {}y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+18 y^{\prime \prime }+30 y^{\prime }+25 y = {\mathrm e}^{-t} \cos \left (2 t \right )+{\mathrm e}^{-2 t} \sin \left (t \right ) \]

16588

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+14 y^{\prime \prime }+20 y^{\prime }+25 y = t^{2} \]

16589

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

16590

\[ {}y^{\prime \prime }+10 y^{\prime }+16 y = 0 \]

16591

\[ {}y^{\prime \prime }+16 y = 0 \]

16592

\[ {}y^{\prime \prime }+25 y = 0 \]

16593

\[ {}y^{\prime \prime }-4 y = t \]

16594

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = {\mathrm e}^{t} \]

16595

\[ {}y^{\prime \prime }+9 y = \sin \left (3 t \right ) \]

16596

\[ {}y^{\prime \prime }+y = \cos \left (t \right ) \]

16597

\[ {}y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

16598

\[ {}y^{\prime \prime }+y = \csc \left (t \right ) \]

16599

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16600

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = \frac {{\mathrm e}^{4 t}}{t^{3}} \]

16601

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16602

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \ln \left (t \right ) \]

16604

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16605

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16623

\[ {}4 x^{\prime \prime }+9 x = 0 \]

16624

\[ {}9 x^{\prime \prime }+4 x = 0 \]

16625

\[ {}x^{\prime \prime }+64 x = 0 \]

16626

\[ {}x^{\prime \prime }+100 x = 0 \]

16627

\[ {}x^{\prime \prime }+x = 0 \]

16628

\[ {}x^{\prime \prime }+4 x = 0 \]

16629

\[ {}x^{\prime \prime }+16 x = 0 \]

16630

\[ {}x^{\prime \prime }+256 x = 0 \]

16631

\[ {}x^{\prime \prime }+9 x = 0 \]

16632

\[ {}10 x^{\prime \prime }+\frac {x}{10} = 0 \]

16633

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

16634

\[ {}\frac {x^{\prime \prime }}{32}+2 x^{\prime }+x = 0 \]

16635

\[ {}\frac {x^{\prime \prime }}{4}+2 x^{\prime }+x = 0 \]

16636

\[ {}4 x^{\prime \prime }+2 x^{\prime }+8 x = 0 \]

16637

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = 0 \]

16638

\[ {}x^{\prime \prime }+4 x^{\prime }+20 x = 0 \]

16639

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16640

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} \cos \left (t \right ) & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

16641

\[ {}x^{\prime \prime }+x = \left \{\begin {array}{cc} t & 0\le t <1 \\ 2-t & 1\le t <2 \\ 0 & 2\le t \end {array}\right . \]

16642

\[ {}x^{\prime \prime }+4 x^{\prime }+13 x = \left \{\begin {array}{cc} 1 & 0\le t <\pi \\ 1-t & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

16643

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16644

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) \]

16645

\[ {}x^{\prime \prime }+x = \cos \left (\frac {9 t}{10}\right ) \]

16646

\[ {}x^{\prime \prime }+x = \cos \left (\frac {7 t}{10}\right ) \]

16647

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{10}+x = 3 \cos \left (2 t \right ) \]

16660

\[ {}x^{\prime \prime }-3 x^{\prime }+4 x = 0 \]

16661

\[ {}x^{\prime \prime }+6 x^{\prime }+9 x = 0 \]

16662

\[ {}x^{\prime \prime }+16 x = t \sin \left (t \right ) \]

16663

\[ {}x^{\prime \prime }+x = {\mathrm e}^{t} \]

16906

\[ {}y^{\prime \prime }+y = 2 \cos \left (x \right )+2 \sin \left (x \right ) \]

16911

\[ {}y^{\prime \prime }+y = 0 \]

16912

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 2 \]

16915

\[ {}y^{\prime \prime \prime \prime } = x \]

16916

\[ {}y^{\prime \prime \prime } = x +\cos \left (x \right ) \]

16918

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

16919

\[ {}y^{\prime \prime } = 2 x \ln \left (x \right ) \]

16935

\[ {}y^{\prime \prime }+y^{\prime }+2 = 0 \]

16952

\[ {}y^{\prime \prime }-y = 0 \]

16953

\[ {}3 y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

16954

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

16955

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16956

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

16957

\[ {}y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 0 \]

16958

\[ {}y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

16959

\[ {}y^{\left (6\right )}+2 y^{\left (5\right )}+y^{\prime \prime \prime \prime } = 0 \]

16960

\[ {}4 y^{\prime \prime }-8 y^{\prime }+5 y = 0 \]

16961

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

16962

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+10 y^{\prime \prime }+12 y^{\prime }+5 y = 0 \]

16963

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = 0 \]

16964

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = 0 \]

16965

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+4 y^{\prime \prime }-2 y^{\prime }-5 y = 0 \]