5.25.5 Problems 401 to 500

Table 5.1107: Second order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

8070

\[ {}y^{\prime \prime } = -3 y \]

8177

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

8219

\[ {}y^{\prime \prime }+y = 0 \]

8221

\[ {}y^{\prime \prime }-y = 0 \]

8223

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

8225

\[ {}y^{\prime \prime }+2 y^{\prime } = 0 \]

8307

\[ {}y^{\prime \prime }+y = 0 \]

8328

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = 0 \]

8335

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

8338

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8342

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

8343

\[ {}2 y^{\prime \prime }+20 y^{\prime }+51 y = 0 \]

8346

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8347

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = 0 \]

8377

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 0 \]

8500

\[ {}y^{\prime \prime }+\beta ^{2} y = 0 \]

8752

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

8753

\[ {}5 y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

8766

\[ {}y^{\prime \prime } = 0 \]

8773

\[ {}y y^{\prime \prime } = 0 \]

8777

\[ {}y^{2} y^{\prime \prime } = 0 \]

8782

\[ {}a y y^{\prime \prime }+b y = 0 \]

8800

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8801

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8802

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

8859

\[ {}y^{\prime \prime }+c y^{\prime }+k y = 0 \]

9072

\[ {}y^{\prime \prime } = 0 \]

9073

\[ {}{y^{\prime \prime }}^{2} = 0 \]

9074

\[ {}{y^{\prime \prime }}^{n} = 0 \]

9075

\[ {}a y^{\prime \prime } = 0 \]

9076

\[ {}a {y^{\prime \prime }}^{2} = 0 \]

9077

\[ {}a {y^{\prime \prime }}^{n} = 0 \]

9082

\[ {}{y^{\prime \prime }}^{3} = 0 \]

9083

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

9092

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

9564

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]

9677

\[ {}y^{\prime \prime }+3 y^{\prime }+4 y = 0 \]

9959

\[ {}u^{\prime \prime }+2 u^{\prime }+u = 0 \]

9991

\[ {}y^{\prime \prime } = 0 \]

11011

\[ {}y^{\prime \prime } = 0 \]

11012

\[ {}y^{\prime \prime }+y = 0 \]

11016

\[ {}y^{\prime \prime }-y = 0 \]

11019

\[ {}y^{\prime \prime }+l y = 0 \]

11044

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12501

\[ {}y^{\prime \prime }+a y = 0 \]

12511

\[ {}y^{\prime \prime }+a y^{\prime }+b y = 0 \]

12919

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12920

\[ {}y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

13028

\[ {}x^{\prime \prime }+2 x^{\prime }+2 x = 0 \]

13033

\[ {}2 x^{\prime \prime }-5 x^{\prime }-3 x = 0 \]

13112

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13113

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13114

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13115

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13116

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13117

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13118

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13119

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13120

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

13121

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

13122

\[ {}x^{\prime \prime }+9 x = 0 \]

13123

\[ {}x^{\prime \prime }-12 x = 0 \]

13124

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

13125

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

13126

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

13127

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

13174

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

13186

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

13187

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

13189

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

13247

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

13254

\[ {}y^{\prime \prime }-2 y^{\prime }-8 y = 0 \]

13261

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

13264

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13265

\[ {}y^{\prime \prime }+y = 0 \]

13266

\[ {}y^{\prime \prime }+y = 0 \]

13267

\[ {}y^{\prime \prime }+y = 0 \]

13392

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

13393

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

13396

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 0 \]

13407

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

13408

\[ {}y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

13409

\[ {}4 y^{\prime \prime }-12 y^{\prime }+5 y = 0 \]

13410

\[ {}3 y^{\prime \prime }-14 y^{\prime }-5 y = 0 \]

13413

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

13414

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

13415

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

13416

\[ {}y^{\prime \prime }+6 y^{\prime }+25 y = 0 \]

13417

\[ {}y^{\prime \prime }+9 y = 0 \]

13418

\[ {}4 y^{\prime \prime }+y = 0 \]

13431

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

13432

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 0 \]

13433

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = 0 \]

13434

\[ {}3 y^{\prime \prime }+4 y^{\prime }-4 y = 0 \]

13435

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 0 \]

13436

\[ {}4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

13437

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

13438

\[ {}9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

13439

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

13440

\[ {}y^{\prime \prime }+6 y^{\prime }+58 y = 0 \]