5.26.2 Problems 101 to 200

Table 5.1121: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

1783

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

1784

\[ {}\left (2 x +1\right ) x y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1785

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1786

\[ {}x y^{\prime \prime }-\left (4 x +1\right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1788

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }-\left (6 x -8\right ) y = 0 \]

2362

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2363

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2373

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2374

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2375

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

2385

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2386

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2393

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2394

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2395

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2396

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2397

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2398

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2399

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2400

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2401

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2431

\[ {}t^{2} y^{\prime \prime }-5 t y^{\prime }+9 y = 0 \]

2432

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2433

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2434

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2435

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2436

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2437

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2438

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2439

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+2 y = 0 \]

2440

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

2543

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2544

\[ {}y^{\prime \prime }+t y^{\prime }+y = 0 \]

2554

\[ {}t^{2} y^{\prime \prime }+\alpha t y^{\prime }+\beta y = 0 \]

2555

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-2 y = 0 \]

2565

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2566

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+2 y = 0 \]

2573

\[ {}y^{\prime \prime }-\frac {2 \left (t +1\right ) y^{\prime }}{t^{2}+2 t -1}+\frac {2 y}{t^{2}+2 t -1} = 0 \]

2574

\[ {}y^{\prime \prime }-4 t y^{\prime }+\left (4 t^{2}-2\right ) y = 0 \]

2575

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2576

\[ {}\left (t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

2577

\[ {}\left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+6 y = 0 \]

2578

\[ {}\left (2 t +1\right ) y^{\prime \prime }-4 \left (t +1\right ) y^{\prime }+4 y = 0 \]

2579

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

2580

\[ {}t y^{\prime \prime }-\left (1+3 t \right ) y^{\prime }+3 y = 0 \]

2581

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2582

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2628

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }-5 y = 0 \]

2629

\[ {}2 t^{2} y^{\prime \prime }+3 t y^{\prime }-y = 0 \]

2630

\[ {}\left (t -1\right )^{2} y^{\prime \prime }-2 \left (t -1\right ) y^{\prime }+2 y = 0 \]

2631

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

2632

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

2633

\[ {}\left (t -2\right )^{2} y^{\prime \prime }+5 \left (t -2\right ) y^{\prime }+4 y = 0 \]

2634

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

2635

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+2 y = 0 \]

2636

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }-2 y = 0 \]

2637

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

3221

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+y = 0 \]

3222

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+16 y = 0 \]

3223

\[ {}4 x^{2} y^{\prime \prime }-16 x y^{\prime }+25 y = 0 \]

3224

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+10 y = 0 \]

3250

\[ {}\left (1-x \right ) y^{\prime \prime } = y^{\prime } \]

3251

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

3284

\[ {}\left (1-{\mathrm e}^{x}\right ) y^{\prime \prime } = {\mathrm e}^{x} y^{\prime } \]

3495

\[ {}\left (x -2\right ) y^{\prime \prime }+3 y^{\prime }+\frac {4 y}{x^{2}} = 0 \]

3565

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+3 y = 0 \]

3566

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3567

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

3575

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

3576

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

3591

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-8 y = 0 \]

3707

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-8 y = 0 \]

3708

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

3781

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

3782

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+25 y = 0 \]

3783

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

3784

\[ {}x y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+\left (x -1\right ) y = 0 \]

3785

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

3786

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

3787

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+4 x^{2} y = 0 \]

3788

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-1\right ) y = 0 \]

4139

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6009

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+2 x \left (1+y^{\prime }\right ) = 0 \]

6026

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6076

\[ {}u^{\prime \prime }-\frac {a^{2} u}{x^{{2}/{3}}} = 0 \]

6077

\[ {}u^{\prime \prime }-\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6078

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}-a^{2} u = 0 \]

6079

\[ {}u^{\prime \prime }+\frac {2 u^{\prime }}{x}+a^{2} u = 0 \]

6080

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}-a^{2} u = 0 \]

6081

\[ {}u^{\prime \prime }+\frac {4 u^{\prime }}{x}+a^{2} u = 0 \]

6082

\[ {}y^{\prime \prime }-a^{2} y = \frac {6 y}{x^{2}} \]

6083

\[ {}y^{\prime \prime }+n^{2} y = \frac {6 y}{x^{2}} \]

6084

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-\left (x^{2}+\frac {1}{4}\right ) y = 0 \]

6085

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\frac {\left (-9 a^{2}+4 x^{2}\right ) y}{4 a^{2}} = 0 \]

6086

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {25}{4}\right ) y = 0 \]

6087

\[ {}y^{\prime \prime }+q y^{\prime } = \frac {2 y}{x^{2}} \]

6088

\[ {}y^{\prime \prime }+y \,{\mathrm e}^{2 x} = n^{2} y \]

6089

\[ {}y^{\prime \prime }+\frac {y}{4 x} = 0 \]

6090

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

6091

\[ {}x y^{\prime \prime }+3 y^{\prime }+4 x^{3} y = 0 \]