5.26.1 Problems 1 to 100

Table 5.1119: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

147

\[ {}x y^{\prime \prime } = y^{\prime } \]

227

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

228

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

229

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

230

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

244

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

245

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

246

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

247

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

248

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

262

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

264

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

266

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

267

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

268

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

269

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

270

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

315

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

316

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

514

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

515

\[ {}x y^{\prime \prime }+3 y^{\prime }+x y = 0 \]

516

\[ {}x y^{\prime \prime }-y^{\prime }+36 x^{3} y = 0 \]

517

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+\left (x +8\right ) y = 0 \]

518

\[ {}36 x^{2} y^{\prime \prime }+60 x y^{\prime }+\left (9 x^{3}-5\right ) y = 0 \]

519

\[ {}16 x^{2} y^{\prime \prime }+24 x y^{\prime }+\left (144 x^{3}+1\right ) y = 0 \]

520

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

521

\[ {}4 x^{2} y^{\prime \prime }-12 x y^{\prime }+\left (15+16 x \right ) y = 0 \]

522

\[ {}16 x^{2} y^{\prime \prime }-\left (-144 x^{3}+5\right ) y = 0 \]

523

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }-2 \left (-x^{5}+14\right ) y = 0 \]

524

\[ {}y^{\prime \prime }+x^{4} y = 0 \]

525

\[ {}x y^{\prime \prime }+4 x^{3} y = 0 \]

526

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

555

\[ {}t x^{\prime \prime }+\left (t -2\right ) x^{\prime }+x = 0 \]

556

\[ {}t x^{\prime \prime }+\left (3 t -1\right ) x^{\prime }+3 x = 0 \]

557

\[ {}t x^{\prime \prime }-\left (4 t +1\right ) x^{\prime }+2 \left (2 t +1\right ) x = 0 \]

558

\[ {}t x^{\prime \prime }+2 \left (t -1\right ) x^{\prime }-2 x = 0 \]

559

\[ {}t x^{\prime \prime }-2 x^{\prime }+t x = 0 \]

560

\[ {}t x^{\prime \prime }+\left (4 t -2\right ) x^{\prime }+\left (13 t -4\right ) x = 0 \]

819

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

820

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

821

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

822

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

833

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

834

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

835

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }-3 y = 0 \]

836

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

837

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

860

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

861

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+25 y = 0 \]

928

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

930

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

931

\[ {}\left (1+x \right ) y^{\prime \prime }-\left (x +2\right ) y^{\prime }+y = 0 \]

932

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

933

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

934

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

1293

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+y = 0 \]

1294

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }+2 y = 0 \]

1295

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+\frac {5 y}{4} = 0 \]

1296

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 0 \]

1297

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

1298

\[ {}t^{2} y^{\prime \prime }-t y^{\prime }+5 y = 0 \]

1299

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }-3 y = 0 \]

1300

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }+10 y = 0 \]

1301

\[ {}y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{-t^{2}} y = 0 \]

1302

\[ {}t y^{\prime \prime }+\left (t^{2}-1\right ) y^{\prime }+t^{3} y = 0 \]

1319

\[ {}t^{2} y^{\prime \prime }-4 t y^{\prime }+6 y = 0 \]

1320

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }-2 y = 0 \]

1321

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

1322

\[ {}t^{2} y^{\prime \prime }-t \left (2+t \right ) y^{\prime }+\left (2+t \right ) y = 0 \]

1323

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

1324

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

1325

\[ {}x^{2} y^{\prime \prime }-\left (x -\frac {3}{16}\right ) y = 0 \]

1326

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

1327

\[ {}t^{2} y^{\prime \prime }-3 t y^{\prime }+4 y = 0 \]

1328

\[ {}t^{2} y^{\prime \prime }+2 t y^{\prime }+\frac {y}{4} = 0 \]

1329

\[ {}2 t^{2} y^{\prime \prime }-5 t y^{\prime }+5 y = 0 \]

1330

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

1331

\[ {}4 t^{2} y^{\prime \prime }-8 t y^{\prime }+9 y = 0 \]

1332

\[ {}t^{2} y^{\prime \prime }+5 t y^{\prime }+13 y = 0 \]

1742

\[ {}\left (x^{2}-1\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1746

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

1747

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

1748

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

1749

\[ {}4 x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (-16 x^{2}+3\right ) y = 0 \]

1750

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

1751

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

1752

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]

1753

\[ {}\left (3 x -1\right ) y^{\prime \prime }-\left (3 x +2\right ) y^{\prime }+\left (6 x -8\right ) y = 0 \]

1754

\[ {}\left (x^{2}-4\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

1755

\[ {}\left (2 x +1\right ) y^{\prime \prime }-2 \left (2 x^{2}-1\right ) y^{\prime }-4 \left (1+x \right ) y = 0 \]

1756

\[ {}\left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }+\left (2 x -2\right ) y = 0 \]

1774

\[ {}x y^{\prime \prime }+\left (-2 x +2\right ) y^{\prime }+\left (x -2\right ) y = 0 \]

1775

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

1776

\[ {}x^{2} \ln \left (x \right )^{2} y^{\prime \prime }-2 x \ln \left (x \right ) y^{\prime }+\left (2+\ln \left (x \right )\right ) y = 0 \]

1777

\[ {}4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

1778

\[ {}x y^{\prime \prime }-\left (2+2 x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

1779

\[ {}x^{2} y^{\prime \prime }-\left (2 a -1\right ) x y^{\prime }+a^{2} y = 0 \]

1780

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

1781

\[ {}x y^{\prime \prime }-\left (4 x +1\right ) y^{\prime }+\left (4 x +2\right ) y = 0 \]

1782

\[ {}4 x^{2} \sin \left (x \right ) y^{\prime \prime }-4 x \left (\sin \left (x \right )+x \cos \left (x \right )\right ) y^{\prime }+\left (2 x \cos \left (x \right )+3 \sin \left (x \right )\right ) y = 0 \]