5.26.3 Problems 201 to 300

Table 5.1123: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

6187

\[ {}y^{\prime \prime }+2 x y^{\prime } = 0 \]

6192

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }-3 y = 0 \]

6193

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

6194

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

6195

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+6 y = 0 \]

6202

\[ {}x^{2} \left (2-x \right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

6203

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6204

\[ {}x y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+\left (x +2\right ) y = 0 \]

6205

\[ {}3 x y^{\prime \prime }-2 \left (3 x -1\right ) y^{\prime }+\left (3 x -2\right ) y = 0 \]

6206

\[ {}x^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

6207

\[ {}x \left (1+x \right ) y^{\prime \prime }-\left (x -1\right ) y^{\prime }+y = 0 \]

6249

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+3 y = 0 \]

6251

\[ {}\left (x^{2}+2 x \right ) y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

6253

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

6255

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

6407

\[ {}x \left (1+x \right )^{2} y^{\prime \prime }+\left (-x^{2}+1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

6408

\[ {}x \left (1-x \right ) y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

6409

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

6410

\[ {}x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

6411

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

6412

\[ {}2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]

6413

\[ {}x y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

6414

\[ {}x \left (x -1\right )^{2} y^{\prime \prime }-2 y = 0 \]

6417

\[ {}x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+m y = 0 \]

6574

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

6695

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

6697

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6755

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

6759

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-10 y = 0 \]

6761

\[ {}4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right )^{2} y = 0 \]

6763

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

6769

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (9 x^{2}+6\right ) y = 0 \]

6910

\[ {}x y^{\prime \prime }+2 y^{\prime } = 0 \]

6911

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

6912

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

6987

\[ {}x y^{\prime \prime }-y^{\prime } = 0 \]

6998

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

7002

\[ {}x^{2} y^{\prime \prime }+\left (x^{2}-x \right ) y^{\prime }+\left (1-x \right ) y = 0 \]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7481

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

7482

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

7483

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7486

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7523

\[ {}y^{\prime \prime }+2 x^{2} y^{\prime }+\left (x^{4}+2 x -1\right ) y = 0 \]

7525

\[ {}\sin \left (x \right ) u^{\prime \prime }+2 \cos \left (x \right ) u^{\prime }+\sin \left (x \right ) u = 0 \]

7527

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{-x^{2}+1}+\frac {y}{-x^{2}+1} = 0 \]

7535

\[ {}u^{\prime \prime }-\left (2 x +1\right ) u^{\prime }+\left (x^{2}+x -1\right ) u = 0 \]

7542

\[ {}y^{\prime \prime }+2 y^{\prime }+\left (1+\frac {2}{\left (1+3 x \right )^{2}}\right ) y = 0 \]

7545

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7546

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {2 y}{\left (1+x \right )^{2}} = 0 \]

7551

\[ {}u^{\prime \prime }-\cot \left (\theta \right ) u^{\prime } = 0 \]

7557

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

7558

\[ {}\left (-x^{2}+1\right ) z^{\prime \prime }+\left (1-3 x \right ) z^{\prime }+k z = 0 \]

7559

\[ {}\left (-x^{2}+1\right ) \eta ^{\prime \prime }-\left (1+x \right ) \eta ^{\prime }+\left (k +1\right ) \eta = 0 \]

7674

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7675

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7676

\[ {}\left (3 x -1\right )^{2} y^{\prime \prime }+\left (9 x -3\right ) y^{\prime }-9 y = 0 \]

7677

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 0 \]

7678

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7679

\[ {}y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-2\right ) y = 0 \]

7680

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

7681

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7682

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

7684

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

7685

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7686

\[ {}x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

7697

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\alpha ^{2} y = 0 \]

7698

\[ {}y^{\prime \prime }-2 x y^{\prime }+2 \alpha y = 0 \]

7699

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

7700

\[ {}2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

7701

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

7705

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+5 y = 0 \]

7706

\[ {}x^{2} y^{\prime \prime }+\left (-2-i\right ) x y^{\prime }+3 i y = 0 \]

7961

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

7962

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

7963

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

7964

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

7965

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

7966

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

7967

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

7968

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

7969

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

8007

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

8008

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

8009

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

8010

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

8011

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

8012

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

8013

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

8014

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

8015

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

8067

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

8287

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{9}\right ) y = 0 \]

8288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

8289

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }+\left (4 x^{2}-25\right ) y = 0 \]

8290

\[ {}16 x^{2} y^{\prime \prime }+16 x y^{\prime }+\left (16 x^{2}-1\right ) y = 0 \]