5.26.23 Problems 2201 to 2300

Table 5.1163: Second order, Linear, Homogeneous and non-constant coefficients

#

ODE

Mathematica

Maple

18008

\[ {}\left (2 x +1\right ) y^{\prime \prime }+\left (4 x -2\right ) y^{\prime }-8 y = 0 \]

18009

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }+\cos \left (x \right ) \sin \left (x \right ) y^{\prime } = y \]

18026

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}-\frac {n \left (n +1\right ) y}{x^{2}} = 0 \]

18032

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}+\left (1-\frac {m^{2}}{x^{2}}\right ) y = 0 \]

18033

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+y = 0 \]

18034

\[ {}y^{\prime \prime }+\frac {2 p y^{\prime }}{x}+y = 0 \]

18035

\[ {}x y^{\prime \prime }-y^{\prime }-x^{3} y = 0 \]

18037

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{\sqrt {x}}+\frac {y \left (-8+\sqrt {x}+x \right )}{4 x^{2}} = 0 \]

18221

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime } = 0 \]

18250

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18258

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

18260

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }-5 y = 0 \]

18261

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+\left (x^{2}+6\right ) y = 0 \]

18263

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18266

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

18271

\[ {}y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

18274

\[ {}x y^{\prime \prime }+3 y^{\prime } = 0 \]

18275

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-4 y = 0 \]

18276

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

18277

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18278

\[ {}y^{\prime \prime }-\frac {x y^{\prime }}{x -1}+\frac {y}{x -1} = 0 \]

18279

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

18280

\[ {}x^{2} y^{\prime \prime }-x \left (x +2\right ) y^{\prime }+\left (x +2\right ) y = 0 \]

18281

\[ {}y^{\prime \prime }-x f \left (x \right ) y^{\prime }+f \left (x \right ) y = 0 \]

18282

\[ {}x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

18283

\[ {}x y^{\prime \prime }-\left (x +n \right ) y^{\prime }+n y = 0 \]

18284

\[ {}x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+y = 0 \]

18285

\[ {}x y^{\prime \prime }-\left (x +2\right ) y^{\prime }+2 y = 0 \]

18286

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

18287

\[ {}y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

18312

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+10 y = 0 \]

18313

\[ {}2 x^{2} y^{\prime \prime }+10 x y^{\prime }+8 y = 0 \]

18314

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-12 y = 0 \]

18315

\[ {}4 x^{2} y^{\prime \prime }-3 y = 0 \]

18316

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

18317

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 0 \]

18318

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+3 y = 0 \]

18319

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-2 y = 0 \]

18320

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-16 y = 0 \]

18321

\[ {}x y^{\prime \prime }+\left (x^{2}-1\right ) y^{\prime }+x^{3} y = 0 \]

18322

\[ {}y^{\prime \prime }+3 x y^{\prime }+x^{2} y = 0 \]

18414

\[ {}y^{\prime \prime }+x y^{\prime }+y = 0 \]

18458

\[ {}x y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-\left (4 x +9\right ) y = 0 \]

18460

\[ {}y^{\prime \prime }+x^{2} y = 0 \]

18513

\[ {}t^{2} x^{\prime \prime }-6 t x^{\prime }+12 x = 0 \]

18516

\[ {}t^{2} x^{\prime \prime }-2 t x^{\prime }+2 x = 0 \]

18533

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0 \]

18534

\[ {}\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0 \]

18602

\[ {}x y^{\prime \prime }+2 y^{\prime } = x y \]

18608

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18615

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18616

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 0 \]

18618

\[ {}v^{\prime \prime }+\frac {2 x v^{\prime }}{x^{2}+1}+\frac {v}{\left (x^{2}+1\right )^{2}} = 0 \]

18694

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+\left (3 x -2\right ) y^{\prime }+y = 0 \]

18709

\[ {}V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0 \]

18710

\[ {}V^{\prime \prime }+\frac {V^{\prime }}{r} = 0 \]

18724

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0 \]

18725

\[ {}v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0 \]

18931

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0 \]

18932

\[ {}\left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0 \]

18949

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

18974

\[ {}x y^{\prime \prime }+y^{\prime } = 0 \]

18991

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

18998

\[ {}\sin \left (x \right )^{2} y^{\prime \prime } = 2 y \]

19005

\[ {}\left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0 \]

19006

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

19007

\[ {}3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0 \]

19009

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0 \]

19010

\[ {}4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0 \]

19011

\[ {}y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0 \]

19012

\[ {}x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0 \]

19013

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0 \]

19014

\[ {}y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0 \]

19017

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y \]

19018

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0 \]

19019

\[ {}y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0 \]

19020

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19021

\[ {}\left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0 \]

19022

\[ {}y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0 \]

19023

\[ {}y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0 \]

19024

\[ {}x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0 \]

19026

\[ {}\left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

19028

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

19031

\[ {}\left (a^{2}-x^{2}\right ) y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x}+\frac {x^{2} y}{a} = 0 \]

19032

\[ {}\left (x^{3}-x \right ) y^{\prime \prime }+y^{\prime }+n^{2} x^{3} y = 0 \]

19035

\[ {}x^{4} y^{\prime \prime }+2 x^{3} y^{\prime }+n^{2} y = 0 \]

19046

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{r} = 0 \]

19315

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

19323

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+5 y = 0 \]

19345

\[ {}\left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5+2 x \right ) y^{\prime }+8 y = 0 \]

19347

\[ {}x y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \]

19349

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19353

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }+2 \left (2 x +1\right ) y^{\prime }+2 y = 0 \]

19354

\[ {}\left (x^{2}-x \right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }-4 y = 0 \]

19358

\[ {}\left (-b \,x^{2}+a x \right ) y^{\prime \prime }+2 a y^{\prime }+2 b y = 0 \]

19359

\[ {}\sin \left (x \right ) y^{\prime \prime }-\cos \left (x \right ) y^{\prime }+2 y \sin \left (x \right ) = 0 \]

19380

\[ {}y^{\prime \prime } = x y^{\prime } \]

19383

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x} = 0 \]

19427

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

19436

\[ {}x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]