4.20.36 Problems 3501 to 3600

Table 4.973: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

18022

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

18023

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

18110

\[ {} y^{\prime \prime }-k y = 0 \]

18172

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 4 x \]

18174

\[ {} y^{\prime \prime }-2 y^{\prime } = 6 \]

18175

\[ {} y^{\prime \prime }-2 y = \sin \left (x \right ) \]

18176

\[ {} y^{\prime \prime } = {\mathrm e}^{x} \]

18177

\[ {} y^{\prime \prime }-2 y^{\prime } = 4 \]

18178

\[ {} y^{\prime \prime }-y = \sin \left (x \right ) \]

18180

\[ {} y^{\prime \prime }+2 y^{\prime } = 6 \,{\mathrm e}^{x} \]

18183

\[ {} y^{\prime \prime }-y = 0 \]

18185

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

18186

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18188

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

18189

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

18190

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

18193

\[ {} y^{\prime \prime }+y = 0 \]

18194

\[ {} y^{\prime \prime }-y = 0 \]

18209

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

18210

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18211

\[ {} y^{\prime \prime }+8 y = 0 \]

18212

\[ {} 2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

18213

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

18214

\[ {} y^{\prime \prime }-9 y^{\prime }+20 y = 0 \]

18215

\[ {} 2 y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

18216

\[ {} 4 y^{\prime \prime }-12 y^{\prime }+9 y = 0 \]

18217

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

18218

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

18219

\[ {} 4 y^{\prime \prime }+20 y^{\prime }+25 y = 0 \]

18220

\[ {} y^{\prime \prime }+2 y^{\prime }+3 y = 0 \]

18221

\[ {} y^{\prime \prime } = 4 y \]

18222

\[ {} 4 y^{\prime \prime }-8 y^{\prime }+7 y = 0 \]

18223

\[ {} 2 y^{\prime \prime }+y^{\prime }-y = 0 \]

18224

\[ {} 16 y^{\prime \prime }-8 y^{\prime }+y = 0 \]

18225

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

18226

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

18227

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

18228

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18229

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

18230

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

18231

\[ {} y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

18232

\[ {} y^{\prime \prime }+8 y^{\prime }-9 y = 0 \]

18244

\[ {} y^{\prime \prime }+3 y^{\prime }-10 y = 6 \,{\mathrm e}^{4 x} \]

18245

\[ {} y^{\prime \prime }+4 y = 3 \sin \left (x \right ) \]

18246

\[ {} y^{\prime \prime }+10 y^{\prime }+25 y = 14 \,{\mathrm e}^{-5 x} \]

18247

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 25 x^{2}+12 \]

18248

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 20 \,{\mathrm e}^{-2 x} \]

18249

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 14 \sin \left (2 x \right )-18 \cos \left (2 x \right ) \]

18250

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right ) \]

18251

\[ {} y^{\prime \prime }-2 y^{\prime } = 12 x -10 \]

18252

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 6 \,{\mathrm e}^{x} \]

18253

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

18254

\[ {} y^{\prime \prime }+y^{\prime } = 10 x^{4}+2 \]

18255

\[ {} y^{\prime \prime }+k^{2} y = \sin \left (b x \right ) \]

18256

\[ {} y^{\prime \prime }+4 y = 4 \cos \left (2 x \right )+6 \cos \left (x \right )+8 x^{2}-4 x \]

18257

\[ {} y^{\prime \prime }+9 y = 2 \sin \left (3 x \right )+4 \sin \left (x \right )-26 \,{\mathrm e}^{-2 x}+27 x^{3} \]

18258

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2 x \]

18259

\[ {} y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{-x} \]

18260

\[ {} y^{\prime \prime }+4 y = \tan \left (2 x \right ) \]

18261

\[ {} y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-x} \ln \left (x \right ) \]

18262

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 64 x \,{\mathrm e}^{-x} \]

18263

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = {\mathrm e}^{-x} \sec \left (2 x \right ) \]

18264

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+y = {\mathrm e}^{-3 x} \]

18265

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{-x}} \]

18266

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

18267

\[ {} y^{\prime \prime }+y = \cot \left (x \right )^{2} \]

18268

\[ {} y^{\prime \prime }+y = \cot \left (2 x \right ) \]

18269

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

18270

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

18271

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

18272

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

18278

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

18279

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

18280

\[ {} y^{\prime \prime \prime }-y = 0 \]

18281

\[ {} y^{\prime \prime \prime }+y = 0 \]

18282

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

18283

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

18284

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

18285

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

18286

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18287

\[ {} y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

18288

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18289

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

18290

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

18291

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

18292

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

18293

\[ {} y^{\prime \prime \prime \prime } = 0 \]

18294

\[ {} y^{\prime \prime \prime \prime } = \sin \left (x \right )+24 \]

18295

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 10+42 \,{\mathrm e}^{3 x} \]

18296

\[ {} y^{\prime \prime \prime }-y^{\prime } = 1 \]

18301

\[ {} y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \]

18302

\[ {} y^{\prime \prime }-y = x^{2} {\mathrm e}^{2 x} \]

18303

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 10 x^{3} {\mathrm e}^{-2 x} \]

18304

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \]

18305

\[ {} y^{\prime \prime }-y = {\mathrm e}^{-x} \]

18306

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 \,{\mathrm e}^{5 x} \]

18307

\[ {} y^{\prime \prime }-y^{\prime }+y = x^{3}-3 x^{2}+1 \]

18308

\[ {} y^{\prime \prime \prime }-2 y^{\prime }+y = 2 x^{3}-3 x^{2}+4 x +5 \]

18309

\[ {} 4 y^{\prime \prime }+y = x^{4} \]

18310

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime } = x^{2} \]