|
# |
ODE |
Mathematica |
Maple |
Sympy |
|
\[
{} x^{2} y^{\prime \prime } = \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \frac {1}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }-1-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+3 y^{\prime } = 3 x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} V^{\prime \prime }+\frac {2 V^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} V^{\prime \prime }+\frac {V^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\frac {2 y}{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} v^{\prime \prime }+\frac {2 v^{\prime }}{r} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 2 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+y = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+3 x^{2} y^{\prime \prime }+x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = x^{4}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+2 x y^{\prime }-20 y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+7 x y^{\prime }+5 y = x^{5}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (5+2 x \right )^{2} y^{\prime \prime }-6 \left (5-2 x \right ) y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (2 x -1\right )^{3} y^{\prime \prime }+\left (2 x -1\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }-\frac {4 y^{\prime \prime }}{x}+\frac {5 y^{\prime }}{x^{2}}-\frac {2 y}{x^{3}} = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x +a \right )^{2} y^{\prime \prime }-4 \left (x +a \right ) y^{\prime }+6 y = x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+6 x^{2} y^{\prime \prime }+4 x y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 c +\frac {10}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 16 \left (1+x \right )^{4} y^{\prime \prime \prime \prime }+96 \left (1+x \right )^{3} y^{\prime \prime \prime }+104 \left (1+x \right )^{2} y^{\prime \prime }+8 \left (1+x \right ) y^{\prime }+y = x^{2}+4 x +3
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{m}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{m}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{4} y^{\prime \prime \prime }+2 x^{3} y^{\prime \prime }-x^{2} y^{\prime }+x y = 1
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-\left (2 m -1\right ) x y^{\prime }+\left (m^{2}+n^{2}\right ) y = n^{2} x^{m} \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime }-3 x y^{\prime }+y = \frac {\ln \left (x \right ) \sin \left (\ln \left (x \right )\right )+1}{x}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime \prime }+\left (x^{2}-3\right ) y^{\prime \prime }+4 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 \,{\mathrm e}^{x} y^{\prime }+2 y \,{\mathrm e}^{x} = x^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \sqrt {x}\, y^{\prime \prime }+2 x y^{\prime }+3 y = x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime } y^{\prime \prime }-x^{2} y y^{\prime } = x y^{2}
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{2} y y^{\prime \prime }+\left (x y^{\prime }-y\right )^{2}-3 y^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime \prime }+1 = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \frac {1}{\sqrt {a y}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {a^{2}}{y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-\frac {a^{2}}{y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }-4 x y^{\prime \prime }+6 y^{\prime } = 4
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 2 x y^{\prime \prime \prime } y^{\prime \prime } = {y^{\prime \prime }}^{2}-a^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-a {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{2} \ln \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+2 y^{\prime }+4 {y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x^{2} y^{\prime \prime \prime \prime }+a^{2} y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a^{2} y^{\prime \prime } y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} a y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime \prime } y^{\prime \prime } = 2
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (y^{2}+2 x^{2} y^{\prime }\right ) y^{\prime \prime }+2 {y^{\prime }}^{2} \left (x +y\right )+x y^{\prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} y^{\prime \prime }-\frac {a^{2} y^{\prime }}{x \left (a^{2}-x^{2}\right )} = \frac {x^{2}}{a \left (a^{2}-x^{2}\right )}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}+x +1\right ) y^{\prime \prime \prime }+\left (6 x +3\right ) y^{\prime \prime }+6 y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} x^{3} y^{\prime \prime \prime }+4 x^{2} y^{\prime \prime }+x \left (x^{2}+2\right ) y^{\prime }+3 x^{2} y = 2 x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} {y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}}
\]
|
✗ |
✓ |
✗ |
|
|
\[
{} \left (x^{3}-x \right ) y^{\prime \prime \prime }+\left (8 x^{2}-3\right ) y^{\prime \prime }+14 x y^{\prime }+4 y = \frac {2}{x^{3}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+y^{\prime }+{y^{\prime }}^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime } = 2
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } \sin \left (x \right )-\cos \left (x \right ) y^{\prime }+2 \sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime \prime }-x y^{\prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y \left (1-\ln \left (y\right )\right ) y^{\prime \prime }+\left (1+\ln \left (y\right )\right ) {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime \prime }+\cos \left (x \right ) y^{\prime \prime }-2 \sin \left (x \right ) y^{\prime }-\cos \left (x \right ) y = \sin \left (2 x \right )
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime } \sin \left (x \right )^{2} = 2 y
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{3} y^{\prime \prime } = a
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime } = a^{2}+k^{2} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }-y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-x^{2} y^{\prime }+x y = x
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (3-x \right ) y^{\prime \prime }-\left (9-4 x \right ) y^{\prime }+\left (6-3 x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }+x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} 3 x^{2} y^{\prime \prime }+\left (-6 x^{2}+2\right ) y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} a^{2} {y^{\prime \prime }}^{2} = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {y^{\prime }}{x^{{1}/{3}}}+\left (\frac {1}{4 x^{{2}/{3}}}-\frac {1}{6 x^{{1}/{3}}}-\frac {6}{x^{2}}\right ) y = 0
\]
|
✗ |
✗ |
✗ |
|
|
\[
{} 4 x^{2} y^{\prime \prime }+4 x^{5} y^{\prime }+\left (x^{8}+6 x^{4}+4\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }+5 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime }-2 \left (x^{2}+x \right ) y^{\prime }+\left (x^{2}+2 x +2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+\frac {a^{2} y}{x^{4}} = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\cot \left (x \right ) y^{\prime }+4 \csc \left (x \right )^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = x^{5}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+a^{2} y = \frac {1}{x^{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x} = n^{2} y
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }+\frac {2 y^{\prime }}{x}+n^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} y^{\prime \prime }-\frac {2 y^{\prime }}{x}+\left (n^{2}+\frac {2}{x^{2}}\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
|
\[
{} \left (x^{2}+1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+3 \left (x -2\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }-2 b y^{\prime }+b^{2} x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+4 x y^{\prime }+4 x^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x y^{\prime \prime }-\left (2 x -1\right ) y^{\prime }+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }-y = x \left (-x^{2}+1\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (x \sin \left (x \right )+\cos \left (x \right )\right ) y^{\prime \prime }-x \cos \left (x \right ) y^{\prime }+\cos \left (x \right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} x^{2} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0
\]
|
✓ |
✓ |
✗ |
|
|
\[
{} y^{\prime \prime }+x y^{\prime }-y = f \left (x \right )
\]
|
✓ |
✓ |
✗ |
|