5.1.60 Problems 5901 to 6000

Table 5.119: First order ode

#

ODE

Mathematica

Maple

13081

\[ {}x^{\prime } = -\frac {2 x}{t}+t \]

13082

\[ {}y^{\prime }+y = {\mathrm e}^{t} \]

13083

\[ {}x^{\prime }+2 t x = {\mathrm e}^{-t^{2}} \]

13084

\[ {}t x^{\prime } = -x+t^{2} \]

13085

\[ {}\theta ^{\prime } = -a \theta +{\mathrm e}^{b t} \]

13086

\[ {}\left (t^{2}+1\right ) x^{\prime } = -3 t x+6 t \]

13087

\[ {}x^{\prime }+\frac {5 x}{t} = t +1 \]

13088

\[ {}x^{\prime } = \left (a +\frac {b}{t}\right ) x \]

13089

\[ {}R^{\prime }+\frac {R}{t} = \frac {2}{t^{2}+1} \]

13090

\[ {}N^{\prime } = N-9 \,{\mathrm e}^{-t} \]

13091

\[ {}\cos \left (\theta \right ) v^{\prime }+v = 3 \]

13092

\[ {}R^{\prime } = \frac {R}{t}+t \,{\mathrm e}^{-t} \]

13093

\[ {}y^{\prime }+a y = \sqrt {t +1} \]

13094

\[ {}x^{\prime } = 2 t x \]

13095

\[ {}x^{\prime }+\frac {{\mathrm e}^{-t} x}{t} = t \]

13097

\[ {}x^{\prime } = \left (t +x\right )^{2} \]

13098

\[ {}x^{\prime } = a x+b \]

13099

\[ {}x^{\prime }+p \left (t \right ) x = 0 \]

13100

\[ {}x^{\prime } = \frac {2 x}{3 t}+\frac {2 t}{x} \]

13101

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

13102

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

13103

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

13105

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

13106

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

13107

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

13108

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

13109

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

13110

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

13111

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

13184

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]

13185

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]

13193

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]

13195

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]

13196

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

13200

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]

13246

\[ {}y^{\prime }+y = 1+x \]

13250

\[ {}2 x y y^{\prime }+x^{2}+y^{2} = 0 \]

13251

\[ {}x y^{\prime }+y = x^{3} y^{3} \]

13252

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

13253

\[ {}y^{\prime }+4 x y = 8 x \]

13258

\[ {}y^{\prime }+2 y = 6 \,{\mathrm e}^{x}+4 x \,{\mathrm e}^{-2 x} \]

13260

\[ {}{y^{\prime }}^{2}-4 y = 0 \]

13262

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13263

\[ {}y^{\prime }+y = 2 x \,{\mathrm e}^{-x} \]

13269

\[ {}y^{\prime } = x^{2} \sin \left (y\right ) \]

13270

\[ {}y^{\prime } = \frac {y^{2}}{x -2} \]

13271

\[ {}y^{\prime } = y^{{1}/{3}} \]

13272

\[ {}3 x +2 y+\left (y+2 x \right ) y^{\prime } = 0 \]

13273

\[ {}y^{2}+3+\left (2 x y-4\right ) y^{\prime } = 0 \]

13274

\[ {}2 x y+1+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

13275

\[ {}3 x^{2} y+2-\left (x^{3}+y\right ) y^{\prime } = 0 \]

13276

\[ {}6 x y+2 y^{2}-5+\left (3 x^{2}+4 x y-6\right ) y^{\prime } = 0 \]

13277

\[ {}y \sec \left (x \right )^{2}+\sec \left (x \right ) \tan \left (x \right )+\left (\tan \left (x \right )+2 y\right ) y^{\prime } = 0 \]

13278

\[ {}\frac {x}{y^{2}}+x +\left (\frac {x^{2}}{y^{3}}+y\right ) y^{\prime } = 0 \]

13279

\[ {}\frac {\left (2 s-1\right ) s^{\prime }}{t}+\frac {s-s^{2}}{t^{2}} = 0 \]

13280

\[ {}\frac {2 y^{{3}/{2}}+1}{\sqrt {x}}+\left (3 \sqrt {x}\, \sqrt {y}-1\right ) y^{\prime } = 0 \]

13281

\[ {}2 x y-3+\left (x^{2}+4 y\right ) y^{\prime } = 0 \]

13282

\[ {}3 x^{2} y^{2}-y^{3}+2 x +\left (2 x^{3} y-3 x y^{2}+1\right ) y^{\prime } = 0 \]

13283

\[ {}2 y \sin \left (x \right ) \cos \left (x \right )+y^{2} \sin \left (x \right )+\left (\sin \left (x \right )^{2}-2 y \cos \left (x \right )\right ) y^{\prime } = 0 \]

13284

\[ {}y \,{\mathrm e}^{x}+2 \,{\mathrm e}^{x}+y^{2}+\left ({\mathrm e}^{x}+2 x y\right ) y^{\prime } = 0 \]

13285

\[ {}\frac {3-y}{x^{2}}+\frac {\left (y^{2}-2 x \right ) y^{\prime }}{x y^{2}} = 0 \]

13286

\[ {}\frac {1+8 x y^{{2}/{3}}}{x^{{2}/{3}} y^{{1}/{3}}}+\frac {\left (2 x^{{4}/{3}} y^{{2}/{3}}-x^{{1}/{3}}\right ) y^{\prime }}{y^{{4}/{3}}} = 0 \]

13287

\[ {}4 x +3 y^{2}+2 x y y^{\prime } = 0 \]

13288

\[ {}y^{2}+2 x y-x^{2} y^{\prime } = 0 \]

13289

\[ {}y+x \left (x^{2}+y^{2}\right )^{2}+\left (y \left (x^{2}+y^{2}\right )^{2}-x \right ) y^{\prime } = 0 \]

13290

\[ {}4 x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

13291

\[ {}x y+2 x +y+2+\left (x^{2}+2 x \right ) y^{\prime } = 0 \]

13292

\[ {}2 r \left (s^{2}+1\right )+\left (r^{4}+1\right ) s^{\prime } = 0 \]

13293

\[ {}\csc \left (y\right )+\sec \left (x \right ) y^{\prime } = 0 \]

13294

\[ {}\tan \left (\theta \right )+2 r \theta ^{\prime } = 0 \]

13295

\[ {}\left ({\mathrm e}^{v}+1\right ) \cos \left (u \right )+{\mathrm e}^{v} \left (1+\sin \left (u \right )\right ) v^{\prime } = 0 \]

13296

\[ {}\left (x +4\right ) \left (1+y^{2}\right )+y \left (x^{2}+3 x +2\right ) y^{\prime } = 0 \]

13297

\[ {}x +y-x y^{\prime } = 0 \]

13298

\[ {}2 x y+3 y^{2}-\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

13299

\[ {}v^{3}+\left (u^{3}-u v^{2}\right ) v^{\prime } = 0 \]

13300

\[ {}x \tan \left (\frac {y}{x}\right )+y-x y^{\prime } = 0 \]

13301

\[ {}\left (2 s^{2}+2 s t +t^{2}\right ) s^{\prime }+s^{2}+2 s t -t^{2} = 0 \]

13302

\[ {}x^{3}+y^{2} \sqrt {x^{2}+y^{2}}-x y \sqrt {x^{2}+y^{2}}\, y^{\prime } = 0 \]

13303

\[ {}\sqrt {x +y}+\sqrt {x -y}+\left (\sqrt {x -y}-\sqrt {x +y}\right ) y^{\prime } = 0 \]

13304

\[ {}y+2+y \left (x +4\right ) y^{\prime } = 0 \]

13305

\[ {}8 \cos \left (y\right )^{2}+\csc \left (x \right )^{2} y^{\prime } = 0 \]

13306

\[ {}\left (3 x +8\right ) \left (4+y^{2}\right )-4 y \left (x^{2}+5 x +6\right ) y^{\prime } = 0 \]

13307

\[ {}x^{2}+3 y^{2}-2 x y y^{\prime } = 0 \]

13308

\[ {}2 x -5 y+\left (4 x -y\right ) y^{\prime } = 0 \]

13309

\[ {}3 x^{2}+9 x y+5 y^{2}-\left (6 x^{2}+4 x y\right ) y^{\prime } = 0 \]

13310

\[ {}x +2 y+\left (2 x -y\right ) y^{\prime } = 0 \]

13311

\[ {}3 x -y-\left (x +y\right ) y^{\prime } = 0 \]

13312

\[ {}x^{2}+2 y^{2}+\left (-y^{2}+4 x y\right ) y^{\prime } = 0 \]

13313

\[ {}2 x^{2}+2 x y+y^{2}+\left (2 x y+x^{2}\right ) y^{\prime } = 0 \]

13314

\[ {}y^{\prime }+\frac {3 y}{x} = 6 x^{2} \]

13315

\[ {}x^{4} y^{\prime }+2 x^{3} y = 1 \]

13316

\[ {}y^{\prime }+3 y = 3 x^{2} {\mathrm e}^{-3 x} \]

13317

\[ {}y^{\prime }+4 x y = 8 x \]

13318

\[ {}x^{\prime }+\frac {x}{t^{2}} = \frac {1}{t^{2}} \]

13319

\[ {}\left (u^{2}+1\right ) v^{\prime }+4 v u = 3 u \]

13320

\[ {}x y^{\prime }+\frac {\left (2 x +1\right ) y}{1+x} = x -1 \]

13321

\[ {}\left (x^{2}+x -2\right ) y^{\prime }+3 \left (1+x \right ) y = x -1 \]

13322

\[ {}x y^{\prime }+x y+y-1 = 0 \]

13323

\[ {}y+\left (x y^{2}+x -y\right ) y^{\prime } = 0 \]