5.1.59 Problems 5801 to 5900

Table 5.117: First order ode

#

ODE

Mathematica

Maple

12869

\[ {}y^{3}-2 x^{2} y+\left (2 x y^{2}-x^{3}\right ) y^{\prime } = 0 \]

12870

\[ {}2 y^{2} x^{3}-y+\left (2 x^{2} y^{3}-x \right ) y^{\prime } = 0 \]

12871

\[ {}\left (x^{2}+y^{2}\right ) \left (x +y y^{\prime }\right )+\sqrt {1+x^{2}+y^{2}}\, \left (-x y^{\prime }+y\right ) = 0 \]

12872

\[ {}1+{\mathrm e}^{\frac {y}{x}}+{\mathrm e}^{\frac {x}{y}} \left (1-\frac {x}{y}\right ) y^{\prime } = 0 \]

12873

\[ {}x y^{\prime }+y-y^{2} \ln \left (x \right ) = 0 \]

12874

\[ {}y^{4} x^{3}+x^{2} y^{3}+x y^{2}+y+\left (y^{3} x^{4}-y^{2} x^{3}-x^{3} y+x \right ) y^{\prime } = 0 \]

12875

\[ {}\left (2 \sqrt {x y}-x \right ) y^{\prime }+y = 0 \]

12876

\[ {}{y^{\prime }}^{2}+\left (x +y\right ) y^{\prime }+x y = 0 \]

12877

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12878

\[ {}y^{2}+{y^{\prime }}^{2} = 1 \]

12879

\[ {}\left (2 x y^{\prime }-y\right )^{2} = 8 x^{3} \]

12880

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

12881

\[ {}{y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-y^{2} \left (x^{2}-y^{2}\right ) = 0 \]

12882

\[ {}2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \]

12883

\[ {}4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12884

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12885

\[ {}y^{\prime }+2 x y = x^{2}+y^{2} \]

12886

\[ {}y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

12887

\[ {}{y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12888

\[ {}x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

12889

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12890

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12891

\[ {}{y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

12892

\[ {}\left (x y^{\prime }-y\right )^{2} = 1+{y^{\prime }}^{2} \]

12893

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \]

12894

\[ {}4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

12895

\[ {}{\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

12896

\[ {}x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

12897

\[ {}\left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

12898

\[ {}y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

12899

\[ {}a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12900

\[ {}\left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

12901

\[ {}y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

12902

\[ {}y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

12903

\[ {}x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0 \]

12904

\[ {}3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

12905

\[ {}y = {y^{\prime }}^{2} \left (1+x \right ) \]

12906

\[ {}\left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

12907

\[ {}{y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

12908

\[ {}\left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

12909

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

12910

\[ {}y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \]

12911

\[ {}x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

12912

\[ {}y = x y^{\prime }+\frac {1}{y^{\prime }} \]

12913

\[ {}x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12914

\[ {}x^{2} {y^{\prime }}^{2}-2 \left (-2+x y\right ) y^{\prime }+y^{2} = 0 \]

12915

\[ {}x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

12916

\[ {}8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

12917

\[ {}4 {y^{\prime }}^{2} = 9 x \]

12918

\[ {}y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

13025

\[ {}x^{\prime } = \frac {2 x}{t} \]

13026

\[ {}x^{\prime } = -\frac {t}{x} \]

13027

\[ {}x^{\prime } = -x^{2} \]

13029

\[ {}x^{\prime } = {\mathrm e}^{-x} \]

13030

\[ {}x^{\prime }+2 x = t^{2}+4 t +7 \]

13031

\[ {}2 t x^{\prime } = x \]

13034

\[ {}x^{\prime } = x \left (1-\frac {x}{4}\right ) \]

13035

\[ {}x^{\prime } = x^{2}+t^{2} \]

13036

\[ {}x^{\prime } = t \cos \left (t^{2}\right ) \]

13037

\[ {}x^{\prime } = \frac {t +1}{\sqrt {t}} \]

13039

\[ {}x^{\prime } = t \,{\mathrm e}^{-2 t} \]

13040

\[ {}x^{\prime } = \frac {1}{t \ln \left (t \right )} \]

13041

\[ {}\sqrt {t}\, x^{\prime } = \cos \left (\sqrt {t}\right ) \]

13042

\[ {}x^{\prime } = \frac {{\mathrm e}^{-t}}{\sqrt {t}} \]

13044

\[ {}x^{\prime } = \sqrt {x} \]

13045

\[ {}x^{\prime } = {\mathrm e}^{-2 x} \]

13046

\[ {}y^{\prime } = 1+y^{2} \]

13047

\[ {}u^{\prime } = \frac {1}{5-2 u} \]

13048

\[ {}x^{\prime } = a x+b \]

13049

\[ {}Q^{\prime } = \frac {Q}{4+Q^{2}} \]

13050

\[ {}x^{\prime } = {\mathrm e}^{x^{2}} \]

13051

\[ {}y^{\prime } = r \left (a -y\right ) \]

13052

\[ {}x^{\prime } = \frac {2 x}{t +1} \]

13053

\[ {}\theta ^{\prime } = t \sqrt {t^{2}+1}\, \sec \left (\theta \right ) \]

13054

\[ {}\left (2 u+1\right ) u^{\prime }-t -1 = 0 \]

13055

\[ {}R^{\prime } = \left (t +1\right ) \left (1+R^{2}\right ) \]

13056

\[ {}y^{\prime }+y+\frac {1}{y} = 0 \]

13057

\[ {}\left (t +1\right ) x^{\prime }+x^{2} = 0 \]

13058

\[ {}y^{\prime } = \frac {1}{2 y+1} \]

13059

\[ {}x^{\prime } = \left (4 t -x\right )^{2} \]

13060

\[ {}x^{\prime } = 2 t x^{2} \]

13061

\[ {}x^{\prime } = t^{2} {\mathrm e}^{-x} \]

13062

\[ {}x^{\prime } = x \left (4+x\right ) \]

13063

\[ {}x^{\prime } = {\mathrm e}^{t +x} \]

13064

\[ {}T^{\prime } = 2 a t \left (T^{2}-a^{2}\right ) \]

13065

\[ {}y^{\prime } = t^{2} \tan \left (y\right ) \]

13066

\[ {}x^{\prime } = \frac {\left (4+2 t \right ) x}{\ln \left (x\right )} \]

13067

\[ {}y^{\prime } = \frac {2 t y^{2}}{t^{2}+1} \]

13068

\[ {}x^{\prime } = \frac {t^{2}}{1-x^{2}} \]

13069

\[ {}x^{\prime } = 6 t \left (x-1\right )^{{2}/{3}} \]

13070

\[ {}x^{\prime } = \frac {4 t^{2}+3 x^{2}}{2 t x} \]

13071

\[ {}x^{\prime } {\mathrm e}^{2 t}+2 x \,{\mathrm e}^{2 t} = {\mathrm e}^{-t} \]

13073

\[ {}y^{\prime } = \frac {y^{2}+2 t y}{t^{2}} \]

13074

\[ {}y^{\prime } = -y^{2} {\mathrm e}^{-t^{2}} \]

13075

\[ {}x^{\prime } = 2 t^{3} x-6 \]

13076

\[ {}\cos \left (t \right ) x^{\prime }-2 x \sin \left (x\right ) = 0 \]

13077

\[ {}x^{\prime } = t -x^{2} \]

13078

\[ {}7 t^{2} x^{\prime } = 3 x-2 t \]

13079

\[ {}x x^{\prime } = 1-t x \]

13080

\[ {}{x^{\prime }}^{2}+t x = \sqrt {t +1} \]