| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-\frac {x y^{2}}{100}}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x \right ) \cos \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = -x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = -x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}}{5}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}}{5}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \,{\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \,{\mathrm e}^{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-\cos \left (\frac {\pi x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-\cos \left (\frac {\pi x}{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x \left (y-4\right )^{2}-2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{2}-2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-2\right )^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 10+3 y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} \left (4-y^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \left (2-y\right ) \left (4-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \ln \left (y+2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left ({\mathrm e}^{y} y-9 y\right ) {\mathrm e}^{-y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y}{\pi }-\sin \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y-6
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m v^{\prime } = m g -k v^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (5 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+{\mathrm e}^{3 x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\left (y-1\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{3 x +2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{x} y^{\prime } = {\mathrm e}^{-y}+{\mathrm e}^{-2 x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \ln \left (x \right ) y^{\prime } = \frac {\left (1+y\right )^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (3+2 y\right )^{2}}{\left (4 x +5\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \csc \left (y\right )+\sec \left (x \right )^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (3 x \right )+2 y \cos \left (3 x \right )^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+{\mathrm e}^{y}\right )^{2} {\mathrm e}^{-y}+\left ({\mathrm e}^{x}+1\right )^{3} {\mathrm e}^{-x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sqrt {1+y^{2}} = y y^{\prime } \sqrt {x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} s^{\prime } = k s
\]
|
✓ |
✓ |
✓ |
|
| \[
{} q^{\prime } = k \left (q-70\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = p-p^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} n^{\prime }+n = n t \,{\mathrm e}^{t +2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y+3 x -y-3}{x y-2 x +4 y-8}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x y+2 y-x -2}{x y-3 y+x -3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x \sqrt {1-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left ({\mathrm e}^{x}+{\mathrm e}^{-x}\right ) y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = 4+4 x^{2}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y^{2}-1}{x^{2}-1}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime } = y-x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {1-y^{2}}-y^{\prime } \sqrt {-x^{2}+1} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{4}+1\right ) y^{\prime }+x \left (1+4 y^{2}\right ) = 0
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sinh \left (y\right ) y^{\prime } = \cosh \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y \,{\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} \sin \left (x^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+y^{2}\right ) \sqrt {1+\cos \left (x^{3}\right )}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{-2 y} \sin \left (x \right )}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x +1}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-2+2 y\right ) y^{\prime } = 3 x^{2}+4 x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y}-{\mathrm e}^{-x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right )+y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-4
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \sin \left (y\right )^{2}-\left (x^{2}+10\right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}+\frac {1}{100}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (y-1\right )^{2}-\frac {1}{100}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{3}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-y^{3}
\]
|
✗ |
✓ |
✓ |
|