6.167 Problems 16601 to 16700

Table 6.333: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16601

\[ {} y^{\prime \prime \prime \prime }-10 y^{\prime \prime }+9 y = 0 \]

16602

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16603

\[ {} y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

16604

\[ {} y^{\prime \prime }-25 y = 0 \]

16605

\[ {} y^{\prime \prime }+3 y^{\prime } = 0 \]

16606

\[ {} 4 y^{\prime \prime }-y = 0 \]

16607

\[ {} 3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

16608

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16609

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16610

\[ {} y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

16611

\[ {} y^{\prime \prime }-9 y = 0 \]

16612

\[ {} y^{\prime \prime }-9 y = 0 \]

16613

\[ {} y^{\prime \prime }-9 y = 0 \]

16614

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

16615

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

16616

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

16617

\[ {} 25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

16618

\[ {} 16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

16619

\[ {} 9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

16620

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16621

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16622

\[ {} y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

16623

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16624

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16625

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16626

\[ {} y^{\prime \prime }+25 y = 0 \]

16627

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

16628

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

16629

\[ {} y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

16630

\[ {} 9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

16631

\[ {} 4 y^{\prime \prime }+y = 0 \]

16632

\[ {} y^{\prime \prime }+16 y = 0 \]

16633

\[ {} y^{\prime \prime }+16 y = 0 \]

16634

\[ {} y^{\prime \prime }+16 y = 0 \]

16635

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16636

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16637

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

16638

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16639

\[ {} y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

16640

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 0 \]

16641

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

16642

\[ {} y^{\prime \prime \prime \prime }-34 y^{\prime \prime }+225 y = 0 \]

16643

\[ {} y^{\prime \prime \prime \prime }-81 y = 0 \]

16644

\[ {} y^{\prime \prime \prime \prime }-18 y^{\prime \prime }+81 y = 0 \]

16645

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = 0 \]

16646

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

16647

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

16648

\[ {} y^{\prime \prime \prime }-8 y^{\prime \prime }+37 y^{\prime }-50 y = 0 \]

16649

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+31 y^{\prime }-39 y = 0 \]

16650

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

16651

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+10 y^{\prime \prime }+18 y^{\prime }+9 y = 0 \]

16652

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16653

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

16654

\[ {} y^{\prime \prime \prime \prime }+26 y^{\prime \prime }+25 y = 0 \]

16655

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }+9 y^{\prime \prime }+9 y^{\prime } = 0 \]

16656

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

16657

\[ {} y^{\prime \prime \prime }+216 y = 0 \]

16658

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime }-4 y = 0 \]

16659

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

16660

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

16661

\[ {} y^{\left (6\right )}-2 y^{\prime \prime \prime }+y = 0 \]

16662

\[ {} 16 y^{\prime \prime \prime \prime }-y = 0 \]

16663

\[ {} 4 y^{\prime \prime \prime \prime }+15 y^{\prime \prime }-4 y = 0 \]

16664

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime }+16 y^{\prime }-16 y = 0 \]

16665

\[ {} y^{\left (6\right )}+16 y^{\prime \prime \prime }+64 y = 0 \]

16666

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

16667

\[ {} x^{2} y^{\prime \prime }-2 y = 0 \]

16668

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

16669

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16670

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

16671

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

16672

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

16673

\[ {} x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

16674

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

16675

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

16676

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

16677

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16678

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16679

\[ {} 4 x^{2} y^{\prime \prime }+37 y = 0 \]

16680

\[ {} x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

16681

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

16682

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

16683

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

16684

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

16685

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

16686

\[ {} x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

16687

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16688

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

16689

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

16690

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

16691

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

16692

\[ {} x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

16693

\[ {} -8 y+7 x y^{\prime }-3 x^{2} y^{\prime \prime }+x^{3} y^{\prime \prime \prime } = 0 \]

16694

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

16695

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

16696

\[ {} x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16697

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

16698

\[ {} 4 y+y^{\prime \prime } = 24 \,{\mathrm e}^{2 x} \]

16699

\[ {} 4 y+y^{\prime \prime } = 24 \,{\mathrm e}^{2 x} \]

16700

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]