6.166 Problems 16501 to 16600

Table 6.331: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16501

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

16502

\[ {} y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

16503

\[ {} y^{\prime } y^{\prime \prime } = 1 \]

16504

\[ {} y y^{\prime \prime } = -{y^{\prime }}^{2} \]

16505

\[ {} x y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

16506

\[ {} x y^{\prime \prime }-{y^{\prime }}^{2} = 6 x^{5} \]

16507

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16508

\[ {} y^{\prime \prime } = 2 y^{\prime }-6 \]

16509

\[ {} \left (y-3\right ) y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16510

\[ {} y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

16511

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16512

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

16513

\[ {} y^{\prime \prime \prime } = 2 \sqrt {y^{\prime \prime }} \]

16514

\[ {} y^{\prime \prime \prime \prime } = -2 y^{\prime \prime \prime } \]

16515

\[ {} y y^{\prime \prime } = {y^{\prime }}^{2} \]

16516

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16517

\[ {} \sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

16518

\[ {} y^{\prime \prime } = y^{\prime } \]

16519

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

16520

\[ {} y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

16521

\[ {} y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

16522

\[ {} y^{\prime } y^{\prime \prime } = 1 \]

16523

\[ {} x y^{\prime \prime } = -y^{\prime }+{y^{\prime }}^{2} \]

16524

\[ {} x y^{\prime \prime }-y^{\prime } = 6 x^{5} \]

16525

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

16526

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16527

\[ {} \left (y-3\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

16528

\[ {} y^{\prime \prime }+4 y^{\prime } = 9 \,{\mathrm e}^{-3 x} \]

16529

\[ {} y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

16530

\[ {} x y^{\prime \prime }+4 y^{\prime } = 18 x^{2} \]

16531

\[ {} x y^{\prime \prime } = 2 y^{\prime } \]

16532

\[ {} y^{\prime \prime } = y^{\prime } \]

16533

\[ {} y^{\prime \prime }+2 y^{\prime } = 8 \,{\mathrm e}^{2 x} \]

16534

\[ {} y^{\prime \prime \prime } = y^{\prime \prime } \]

16535

\[ {} x y^{\prime \prime \prime }+2 y^{\prime \prime } = 6 x \]

16536

\[ {} 2 y^{\prime }+x y^{\prime \prime } = 6 \]

16537

\[ {} 2 x y^{\prime } y^{\prime \prime } = {y^{\prime }}^{2}-1 \]

16538

\[ {} 3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

16539

\[ {} y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

16540

\[ {} y^{\prime \prime } = -{\mathrm e}^{-y} y^{\prime } \]

16541

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16542

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16543

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16544

\[ {} y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

16545

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16546

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16547

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16548

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

16549

\[ {} y^{\prime \prime }+x^{2} y^{\prime }-4 y = x^{3} \]

16550

\[ {} y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

16551

\[ {} y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

16552

\[ {} y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

16553

\[ {} x y^{\prime }+3 y = {\mathrm e}^{2 x} \]

16554

\[ {} y^{\prime \prime \prime }+y = 0 \]

16555

\[ {} \left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

16556

\[ {} y^{\prime \prime } = 2 y^{\prime }-5 y+30 \,{\mathrm e}^{3 x} \]

16557

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime }-83 y-25 = 0 \]

16558

\[ {} y y^{\prime \prime \prime }+6 y^{\prime \prime }+3 y^{\prime } = y \]

16559

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 0 \]

16560

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

16561

\[ {} x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

16562

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16563

\[ {} 4 x^{2} y^{\prime \prime }+y = 0 \]

16564

\[ {} y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

16565

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

16566

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

16567

\[ {} y^{\prime \prime }+y = 0 \]

16568

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 0 \]

16569

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0 \]

16570

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

16571

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

16572

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

16573

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 9 \,{\mathrm e}^{2 x} \]

16574

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = {\mathrm e}^{4 x} \]

16575

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

16576

\[ {} x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

16577

\[ {} x y^{\prime \prime }+\left (2 x +2\right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

16578

\[ {} \left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

16579

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = 0 \]

16580

\[ {} y^{\prime \prime \prime }-9 y^{\prime \prime }+27 y^{\prime }-27 y = {\mathrm e}^{3 x} \sin \left (x \right ) \]

16581

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+24 y^{\prime \prime }-32 y^{\prime }+16 y = 0 \]

16582

\[ {} x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

16583

\[ {} 4 y+y^{\prime \prime } = 0 \]

16584

\[ {} y^{\prime \prime }-4 y = 0 \]

16585

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

16586

\[ {} 4 y-4 y^{\prime }+y^{\prime \prime } = 0 \]

16587

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16588

\[ {} 4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

16589

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

16590

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

16591

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-2 y^{\prime } \left (1+x \right )+2 y = 0 \]

16592

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

16593

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

16594

\[ {} y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

16595

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

16596

\[ {} y^{\prime \prime }-4 y = 0 \]

16597

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

16598

\[ {} y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

16599

\[ {} y^{\prime \prime }+5 y^{\prime } = 0 \]

16600

\[ {} y^{\prime \prime \prime }-9 y^{\prime } = 0 \]