6.168 Problems 16701 to 16800

Table 6.335: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16701

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 8 x^{2}-3 \]

16702

\[ {} y^{\prime \prime }-9 y = 36 \]

16703

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -6 \,{\mathrm e}^{4 x} \]

16704

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 7 \,{\mathrm e}^{5 x} \]

16705

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = 169 \sin \left (2 x \right ) \]

16706

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

16707

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime } = 1 \]

16708

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{4 x} \]

16709

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = {\mathrm e}^{5 x} \]

16710

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -18 \,{\mathrm e}^{4 x}+14 \,{\mathrm e}^{5 x} \]

16711

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 35 \,{\mathrm e}^{5 x}+12 \,{\mathrm e}^{4 x} \]

16712

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

16713

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

16714

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

16715

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

16716

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

16717

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

16718

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

16719

\[ {} y^{\prime \prime }+9 y = 52 \,{\mathrm e}^{2 x} \]

16720

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x} \]

16721

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 30 \,{\mathrm e}^{-4 x} \]

16722

\[ {} y^{\prime \prime }+3 y^{\prime } = {\mathrm e}^{\frac {x}{2}} \]

16723

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -5 \,{\mathrm e}^{3 x} \]

16724

\[ {} y^{\prime \prime }+9 y = 10 \cos \left (2 x \right )+15 \sin \left (2 x \right ) \]

16725

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 25 \sin \left (6 x \right ) \]

16726

\[ {} y^{\prime \prime }+3 y^{\prime } = 26 \cos \left (\frac {x}{3}\right )-12 \sin \left (\frac {x}{3}\right ) \]

16727

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = \cos \left (x \right ) \]

16728

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -4 \cos \left (x \right )+7 \sin \left (x \right ) \]

16729

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -200 \]

16730

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = x^{3} \]

16731

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 18 x^{2}+3 x +4 \]

16732

\[ {} y^{\prime \prime }+9 y = 9 x^{4}-9 \]

16733

\[ {} y^{\prime \prime }+9 y = x^{3} \]

16734

\[ {} y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right ) \]

16735

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

16736

\[ {} y^{\prime \prime }+9 y = 54 x^{2} {\mathrm e}^{3 x} \]

16737

\[ {} y^{\prime \prime } = 6 \,{\mathrm e}^{x} \sin \left (x \right ) x \]

16738

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \left (-6 x -8\right ) \cos \left (2 x \right )+\left (8 x -11\right ) \sin \left (2 x \right ) \]

16739

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \left (12 x -4\right ) {\mathrm e}^{-5 x} \]

16740

\[ {} y^{\prime \prime }+9 y = 39 x \,{\mathrm e}^{2 x} \]

16741

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = -3 \,{\mathrm e}^{-2 x} \]

16742

\[ {} y^{\prime \prime }+4 y^{\prime } = 20 \]

16743

\[ {} y^{\prime \prime }+4 y^{\prime } = x^{2} \]

16744

\[ {} y^{\prime \prime }+9 y = 3 \sin \left (3 x \right ) \]

16745

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 10 \,{\mathrm e}^{3 x} \]

16746

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = \left (72 x^{2}-1\right ) {\mathrm e}^{2 x} \]

16747

\[ {} y^{\prime \prime }-3 y^{\prime }-10 y = 4 x \,{\mathrm e}^{6 x} \]

16748

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{5 x} \]

16749

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 6 \,{\mathrm e}^{-5 x} \]

16750

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 24 \sin \left (3 x \right ) \]

16751

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 8 \,{\mathrm e}^{-3 x} \]

16752

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

16753

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \sin \left (x \right ) \]

16754

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 100 \]

16755

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{-x} \]

16756

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 10 x^{2}+4 x +8 \]

16757

\[ {} y^{\prime \prime }+9 y = {\mathrm e}^{2 x} \sin \left (x \right ) \]

16758

\[ {} y^{\prime \prime }+y = 6 \cos \left (x \right )-3 \sin \left (x \right ) \]

16759

\[ {} y^{\prime \prime }+y = 6 \cos \left (2 x \right )-3 \sin \left (2 x \right ) \]

16760

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{-x} \sin \left (x \right ) \]

16761

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = x^{3} {\mathrm e}^{2 x} \sin \left (x \right ) \]

16762

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{-7 x}+2 \,{\mathrm e}^{-7 x} \]

16763

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} \]

16764

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{-8 x} \]

16765

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = 4 \,{\mathrm e}^{3 x} \]

16766

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{3 x} \]

16767

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} \cos \left (2 x \right ) \]

16768

\[ {} 6 y-5 y^{\prime }+y^{\prime \prime } = x^{2} {\mathrm e}^{3 x} \sin \left (2 x \right ) \]

16769

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{4 x} \sin \left (2 x \right ) \]

16770

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = {\mathrm e}^{2 x} \sin \left (4 x \right ) \]

16771

\[ {} y^{\prime \prime }-4 y^{\prime }+20 y = x^{3} \sin \left (4 x \right ) \]

16772

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{2} {\mathrm e}^{5 x} \]

16773

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = 3 x^{4} \]

16774

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 12 \,{\mathrm e}^{-2 x} \]

16775

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 10 \sin \left (2 x \right ) \]

16776

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 \,{\mathrm e}^{4 x} \]

16777

\[ {} y^{\prime \prime \prime \prime }-4 y^{\prime \prime \prime } = 32 x \]

16778

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = x^{2} \]

16779

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 \cos \left (2 x \right ) \]

16780

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 6 \,{\mathrm e}^{x} \]

16781

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \]

16782

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = \sin \left (3 x \right ) x^{2} \]

16783

\[ {} y^{\left (5\right )}+18 y^{\prime \prime \prime }+81 y^{\prime } = x^{2} {\mathrm e}^{3 x} \sin \left (3 x \right ) \]

16784

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 30 x \cos \left (2 x \right ) \]

16785

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \cos \left (x \right ) \]

16786

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 3 x \,{\mathrm e}^{x} \cos \left (x \right ) \]

16787

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 5 x^{5} {\mathrm e}^{2 x} \]

16788

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 27 \,{\mathrm e}^{6 x}+25 \sin \left (6 x \right ) \]

16789

\[ {} y^{\prime \prime }+9 y = 25 x \cos \left (2 x \right )+3 \sin \left (3 x \right ) \]

16790

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 5 \sin \left (x \right )^{2} \]

16791

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 20 \sinh \left (x \right ) \]

16792

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

16793

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

16794

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

16795

\[ {} x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

16796

\[ {} 3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

16797

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

16798

\[ {} x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

16799

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 x^{2} \ln \left (x \right ) \]

16800

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]