| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {5^{-t}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = y^{2}-3 y+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (-y+t \right )+\sin \left (y+t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{3}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1 = \cos \left (y\right ) y^{\prime }
\]
|
✗ |
✓ |
✓ |
|
| \[
{} \sin \left (y \right )^{2} = x^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sqrt {t}}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {\frac {y}{t}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{t}}{y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{-y+t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{\ln \left (y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = t \sin \left (t^{2}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3+y}{3 x +1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = {\mathrm e}^{2 x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 y+1}{x +3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \cos \left (t \right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2} \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {y}\, \cos \left (t \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+f \left (t \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y-2}{x -2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y+3}{3 x +3 y+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y+2}{2 x -2 y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x +y-4\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (3 y+1\right )^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 16 y-8 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 12+4 y-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = f \left (t \right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 10
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 2 \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 2 \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = t^{2}-2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 4 t \,{\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = t^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 t y}{t^{2}+1} = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x +\frac {x y}{x^{2}-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\cot \left (t \right ) y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {3 t y}{t^{2}-4} = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x +y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\left (x +3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} p^{\prime } = t^{3}+\frac {p}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} v^{\prime }+v = {\mathrm e}^{-s}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime } = 4 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 t y+y^{\prime } = 2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = \cos \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }+y = 2 t \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = x+t +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y+{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {y}{t} = \ln \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right .
\]
|
✓ |
✓ |
✗ |
|
| \[
{} -y+y^{\prime } = \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = 5 \,{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = {\mathrm e}^{-t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+y^{\prime } = 2-{\mathrm e}^{2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = t
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+y^{\prime } = 27 t^{2}+9
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -\frac {y}{2}+y^{\prime } = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y = 8 \cos \left (4 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+10 y = 2 \,{\mathrm e}^{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-3 y = 27 t^{2}
\]
|
✓ |
✓ |
✓ |
|