6.173 Problems 17201 to 17300

Table 6.345: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17201

\[ {} \left (2-\frac {5}{y^{2}}\right ) y^{\prime }+4 \cos \left (x \right )^{2} = 0 \]

17202

\[ {} y^{\prime } = \frac {t^{3}}{y \sqrt {\left (1-y^{2}\right ) \left (t^{4}+9\right )}} \]

17203

\[ {} \tan \left (y\right ) \sec \left (y\right )^{2} y^{\prime }+\cos \left (2 x \right )^{3} \sin \left (2 x \right ) = 0 \]

17204

\[ {} y^{\prime } = \frac {\left (1+2 \,{\mathrm e}^{y}\right ) {\mathrm e}^{-y}}{t \ln \left (t \right )} \]

17205

\[ {} x \sin \left (x^{2}\right ) = \frac {\cos \left (\sqrt {y}\right ) y^{\prime }}{\sqrt {y}} \]

17206

\[ {} \frac {x -2}{x^{2}-4 x +3} = \frac {\left (1-\frac {1}{y}\right )^{2} y^{\prime }}{y^{2}} \]

17207

\[ {} \frac {\cos \left (y\right ) y^{\prime }}{\left (1-\sin \left (y\right )\right )^{2}} = \sin \left (x \right )^{3} \cos \left (x \right ) \]

17208

\[ {} y^{\prime } = \frac {\left (5-2 \cos \left (x \right )\right )^{3} \sin \left (x \right ) \cos \left (y\right )^{4}}{\sin \left (y\right )} \]

17209

\[ {} \frac {\sqrt {\ln \left (x \right )}}{x} = \frac {{\mathrm e}^{\frac {3}{y}} y^{\prime }}{y} \]

17210

\[ {} y^{\prime } = \frac {5^{-t}}{y^{2}} \]

17211

\[ {} y^{\prime } = t^{2} y^{2}+y^{2}-t^{2}-1 \]

17212

\[ {} y^{\prime } = y^{2}-3 y+2 \]

17213

\[ {} 4 \left (x -1\right )^{2} y^{\prime }-3 \left (3+y\right )^{2} = 0 \]

17214

\[ {} y^{\prime } = \sin \left (-y+t \right )+\sin \left (y+t \right ) \]

17215

\[ {} y^{\prime } = y^{3}+1 \]

17216

\[ {} y^{\prime } = y^{3}-1 \]

17217

\[ {} y^{\prime } = y^{3}+y \]

17218

\[ {} y^{\prime } = y^{3}-y^{2} \]

17219

\[ {} y^{\prime } = y^{3}-y \]

17220

\[ {} y^{\prime } = y^{3}+y \]

17221

\[ {} y^{\prime } = x^{3} \]

17222

\[ {} y^{\prime } = \cos \left (t \right ) \]

17223

\[ {} 1 = \cos \left (y\right ) y^{\prime } \]

17224

\[ {} \sin \left (y \right )^{2} = x^{\prime } \]

17225

\[ {} y^{\prime } = \frac {\sqrt {t}}{y} \]

17226

\[ {} y^{\prime } = \sqrt {\frac {y}{t}} \]

17227

\[ {} y^{\prime } = \frac {{\mathrm e}^{t}}{y+1} \]

17228

\[ {} y^{\prime } = {\mathrm e}^{-y+t} \]

17229

\[ {} y^{\prime } = \frac {y}{\ln \left (y\right )} \]

17230

\[ {} y^{\prime } = t \sin \left (t^{2}\right ) \]

17231

\[ {} y^{\prime } = \frac {1}{x^{2}+1} \]

17232

\[ {} y^{\prime } = \frac {\sin \left (x \right )}{\cos \left (y\right )+1} \]

17233

\[ {} y^{\prime } = \frac {3+y}{3 x +1} \]

17234

\[ {} y^{\prime } = {\mathrm e}^{x -y} \]

17235

\[ {} y^{\prime } = {\mathrm e}^{2 x -y} \]

17236

\[ {} y^{\prime } = \frac {3 y+1}{x +3} \]

17237

\[ {} y^{\prime } = \cos \left (t \right ) y \]

17238

\[ {} y^{\prime } = y^{2} \cos \left (t \right ) \]

17239

\[ {} y^{\prime } = \sqrt {y}\, \cos \left (t \right ) \]

17240

\[ {} y^{\prime }+f \left (t \right ) y = 0 \]

17241

\[ {} y^{\prime } = -\frac {y-2}{x -2} \]

17242

\[ {} y^{\prime } = \frac {x +y+3}{3 x +3 y+1} \]

17243

\[ {} y^{\prime } = \frac {x -y+2}{2 x -2 y-1} \]

17244

\[ {} y^{\prime } = \left (x +y-4\right )^{2} \]

17245

\[ {} y^{\prime } = \left (3 y+1\right )^{4} \]

17246

\[ {} y^{\prime } = 3 y \]

17247

\[ {} y^{\prime } = -y \]

17248

\[ {} y^{\prime } = y^{2}-y \]

17249

\[ {} y^{\prime } = 16 y-8 y^{2} \]

17250

\[ {} y^{\prime } = 12+4 y-y^{2} \]

17251

\[ {} y^{\prime } = f \left (t \right ) y \]

17252

\[ {} -y+y^{\prime } = 10 \]

17253

\[ {} -y+y^{\prime } = 2 \,{\mathrm e}^{-t} \]

17254

\[ {} -y+y^{\prime } = 2 \cos \left (t \right ) \]

17255

\[ {} -y+y^{\prime } = t^{2}-2 t \]

17256

\[ {} -y+y^{\prime } = 4 t \,{\mathrm e}^{-t} \]

17257

\[ {} t y^{\prime }+y = t^{2} \]

17258

\[ {} t y^{\prime }+y = t \]

17259

\[ {} x y^{\prime }+y = x \,{\mathrm e}^{x} \]

17260

\[ {} x y^{\prime }+y = {\mathrm e}^{-x} \]

17261

\[ {} y^{\prime }-\frac {2 t y}{t^{2}+1} = 2 \]

17262

\[ {} y^{\prime }-\frac {4 t y}{4 t^{2}+1} = 4 t \]

17263

\[ {} y^{\prime } = 2 x +\frac {x y}{x^{2}-1} \]

17264

\[ {} y^{\prime }+\cot \left (t \right ) y = \cos \left (t \right ) \]

17265

\[ {} y^{\prime }-\frac {3 t y}{t^{2}-4} = t \]

17266

\[ {} y^{\prime }-\frac {4 t y}{4 t^{2}-9} = t \]

17267

\[ {} y^{\prime }-\frac {9 x y}{9 x^{2}+49} = x \]

17268

\[ {} y^{\prime }+2 y \cot \left (x \right ) = \cos \left (x \right ) \]

17269

\[ {} y^{\prime }+x y = x^{3} \]

17270

\[ {} y^{\prime }-x y = x \]

17271

\[ {} y^{\prime } = \frac {1}{x +y^{2}} \]

17272

\[ {} y^{\prime }-x = y \]

17273

\[ {} y-\left (x +3 y^{2}\right ) y^{\prime } = 0 \]

17274

\[ {} x^{\prime } = \frac {3 x t^{2}}{-t^{3}+1} \]

17275

\[ {} p^{\prime } = t^{3}+\frac {p}{t} \]

17276

\[ {} v^{\prime }+v = {\mathrm e}^{-s} \]

17277

\[ {} -y+y^{\prime } = 4 \,{\mathrm e}^{t} \]

17278

\[ {} y+y^{\prime } = {\mathrm e}^{-t} \]

17279

\[ {} y^{\prime }+3 t^{2} y = {\mathrm e}^{-t^{3}} \]

17280

\[ {} 2 t y+y^{\prime } = 2 t \]

17281

\[ {} t y^{\prime }+y = \cos \left (t \right ) \]

17282

\[ {} t y^{\prime }+y = 2 t \,{\mathrm e}^{t} \]

17283

\[ {} \left (1+{\mathrm e}^{t}\right ) y^{\prime }+{\mathrm e}^{t} y = t \]

17284

\[ {} \left (t^{2}+4\right ) y^{\prime }+2 t y = 2 t \]

17285

\[ {} x^{\prime } = x+t +1 \]

17286

\[ {} y^{\prime } = 2 y+{\mathrm e}^{2 t} \]

17287

\[ {} y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

17288

\[ {} y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

17289

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

17290

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17291

\[ {} -y+y^{\prime } = \sin \left (2 t \right ) \]

17292

\[ {} y+y^{\prime } = 5 \,{\mathrm e}^{2 t} \]

17293

\[ {} y+y^{\prime } = {\mathrm e}^{-t} \]

17294

\[ {} y+y^{\prime } = 2-{\mathrm e}^{2 t} \]

17295

\[ {} y^{\prime }-5 y = t \]

17296

\[ {} 3 y+y^{\prime } = 27 t^{2}+9 \]

17297

\[ {} -\frac {y}{2}+y^{\prime } = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

17298

\[ {} y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

17299

\[ {} y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

17300

\[ {} y^{\prime }-3 y = 27 t^{2} \]