6.172 Problems 17101 to 17200

Table 6.343: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17101

\[ {} y^{\prime } = \frac {-x^{2}+x}{\left (1+x \right ) \left (x^{2}+1\right )} \]

17102

\[ {} y^{\prime } = \frac {\sqrt {x^{2}-16}}{x} \]

17103

\[ {} y^{\prime } = \left (-x^{2}+4\right )^{{3}/{2}} \]

17104

\[ {} y^{\prime } = \frac {1}{x^{2}-16} \]

17105

\[ {} y^{\prime } = \cos \left (x \right ) \cot \left (x \right ) \]

17106

\[ {} y^{\prime } = \sin \left (x \right )^{3} \tan \left (x \right ) \]

17107

\[ {} 2 y+y^{\prime } = 0 \]

17108

\[ {} y+y^{\prime } = \sin \left (t \right ) \]

17109

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17110

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17111

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17112

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 0 \]

17113

\[ {} t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

17114

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

17115

\[ {} y^{\prime } = 4 x^{3}-x +2 \]

17116

\[ {} y^{\prime } = \sin \left (2 t \right )-\cos \left (2 t \right ) \]

17117

\[ {} y^{\prime } = \frac {\cos \left (\frac {1}{x}\right )}{x^{2}} \]

17118

\[ {} y^{\prime } = \frac {\ln \left (x \right )}{x} \]

17119

\[ {} y^{\prime } = \frac {\left (x -4\right ) y^{3}}{x^{3} \left (y-2\right )} \]

17120

\[ {} y^{\prime } = \frac {2 x y+y^{2}}{x^{2}} \]

17121

\[ {} x y^{\prime }+y = \cos \left (x \right ) \]

17122

\[ {} 16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

17123

\[ {} [x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )-2 y \left (t \right )] \]

17124

\[ {} 4 x \left (x^{2}+y^{2}\right )-5 y+4 y \left (x^{2}+y^{2}-5 x \right ) y^{\prime } = 0 \]

17125

\[ {} y^{\prime } = \sin \left (x \right )^{4} \]

17126

\[ {} y^{\prime \prime \prime \prime }+\frac {25 y^{\prime \prime }}{2}-5 y^{\prime }+\frac {629 y}{16} = 0 \]

17127

\[ {} [x^{\prime }\left (t \right ) = 4 y \left (t \right ), y^{\prime }\left (t \right ) = -4 x \left (t \right )] \]

17128

\[ {} [x^{\prime }\left (t \right ) = -5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )+2 y \left (t \right )] \]

17129

\[ {} y^{\prime }+y \cos \left (x \right ) = 0 \]

17130

\[ {} y^{\prime }-y = \sin \left (x \right ) \]

17131

\[ {} y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

17132

\[ {} y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

17133

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

17134

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

17135

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = x \]

17136

\[ {} 12 y-7 y^{\prime }+y^{\prime \prime } = 2 \]

17137

\[ {} 2 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0 \]

17138

\[ {} y \cos \left (x y\right )+\sin \left (x \right )+x \cos \left (x y\right ) y^{\prime } = 0 \]

17139

\[ {} y^{\prime } = x \,{\mathrm e}^{-x^{2}} \]

17140

\[ {} y^{\prime } = x^{2} \sin \left (x \right ) \]

17141

\[ {} y^{\prime } = \frac {2 x^{2}-x +1}{\left (x -1\right ) \left (x^{2}+1\right )} \]

17142

\[ {} y^{\prime } = \frac {x^{2}}{\sqrt {x^{2}-1}} \]

17143

\[ {} 2 y+y^{\prime } = x^{2} \]

17144

\[ {} y^{\prime \prime }+4 y = t \]

17145

\[ {} x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

17146

\[ {} y^{\prime } = \sin \left (x \right ) \cos \left (x \right )^{2} \]

17147

\[ {} y^{\prime } = \frac {4 x -9}{3 \left (x -3\right )^{{2}/{3}}} \]

17148

\[ {} y^{\prime }+t^{2} = y^{2} \]

17149

\[ {} y^{\prime }+t^{2} = \frac {1}{y^{2}} \]

17150

\[ {} y^{\prime } = y+\frac {1}{1-t} \]

17151

\[ {} y^{\prime } = y^{{1}/{5}} \]

17152

\[ {} \frac {y^{\prime }}{t} = \sqrt {y} \]

17153

\[ {} y^{\prime } = 4 t^{2}-t y^{2} \]

17154

\[ {} y^{\prime } = y \sqrt {t} \]

17155

\[ {} y^{\prime } = 6 y^{{2}/{3}} \]

17156

\[ {} t y^{\prime } = y \]

17157

\[ {} y^{\prime } = \tan \left (t \right ) y \]

17158

\[ {} y^{\prime } = \frac {1}{t^{2}+1} \]

17159

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17160

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17161

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17162

\[ {} y^{\prime } = \sqrt {y^{2}-1} \]

17163

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17164

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17165

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17166

\[ {} y^{\prime } = \sqrt {25-y^{2}} \]

17167

\[ {} t y^{\prime }+y = t^{3} \]

17168

\[ {} t^{3} y^{\prime }+t^{4} y = 2 t^{3} \]

17169

\[ {} 2 y^{\prime }+t y = \ln \left (t \right ) \]

17170

\[ {} y^{\prime }+y \sec \left (t \right ) = t \]

17171

\[ {} y^{\prime }+\frac {y}{t -3} = \frac {1}{t -1} \]

17172

\[ {} \left (t -2\right ) y^{\prime }+\left (t^{2}-4\right ) y = \frac {1}{t +2} \]

17173

\[ {} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

17174

\[ {} y^{\prime }+\frac {y}{\sqrt {-t^{2}+4}} = t \]

17175

\[ {} t y^{\prime }+y = t \sin \left (t \right ) \]

17176

\[ {} \tan \left (t \right ) y+y^{\prime } = \sin \left (t \right ) \]

17177

\[ {} y^{\prime } = y^{2} \]

17178

\[ {} y^{\prime } = t y^{2} \]

17179

\[ {} y^{\prime } = -\frac {t}{y} \]

17180

\[ {} y^{\prime } = -y^{3} \]

17181

\[ {} y^{\prime } = \frac {x}{y^{2}} \]

17182

\[ {} \frac {1}{2 \sqrt {t}}+y^{2} y^{\prime } = 0 \]

17183

\[ {} y^{\prime } = \frac {\sqrt {y}}{x^{2}} \]

17184

\[ {} y^{\prime } = \frac {1+y^{2}}{y} \]

17185

\[ {} 6+4 t^{3}+\left (5+\frac {9}{y^{8}}\right ) y^{\prime } = 0 \]

17186

\[ {} \frac {6}{t^{9}}-\frac {6}{t^{3}}+t^{7}+\left (9+\frac {1}{s^{2}}-4 s^{8}\right ) s^{\prime } = 0 \]

17187

\[ {} 4 \sinh \left (4 y\right ) y^{\prime } = 6 \cosh \left (3 x \right ) \]

17188

\[ {} y^{\prime } = \frac {y+1}{t +1} \]

17189

\[ {} y^{\prime } = \frac {y+2}{2 t +1} \]

17190

\[ {} \frac {3}{t^{2}} = \left (\frac {1}{\sqrt {y}}+\sqrt {y}\right ) y^{\prime } \]

17191

\[ {} 3 \sin \left (x \right )-4 \cos \left (y\right ) y^{\prime } = 0 \]

17192

\[ {} \cos \left (y\right ) y^{\prime } = 8 \sin \left (8 t \right ) \]

17193

\[ {} y^{\prime }+k y = 0 \]

17194

\[ {} \left (5 x^{5}-4 \cos \left (x\right )\right ) x^{\prime }+2 \cos \left (9 t \right )+2 \sin \left (7 t \right ) = 0 \]

17195

\[ {} \cosh \left (6 t \right )+5 \sinh \left (4 t \right )+20 \sinh \left (y\right ) y^{\prime } = 0 \]

17196

\[ {} y^{\prime } = {\mathrm e}^{2 y+10 t} \]

17197

\[ {} y^{\prime } = {\mathrm e}^{3 y+2 t} \]

17198

\[ {} \sin \left (t \right )^{2} = \cos \left (y\right )^{2} y^{\prime } \]

17199

\[ {} 3 \sin \left (t \right )-\sin \left (3 t \right ) = \left (\cos \left (4 y\right )-4 \cos \left (y\right )\right ) y^{\prime } \]

17200

\[ {} x^{\prime } = \frac {\sec \left (t \right )^{2}}{\sec \left (x\right ) \tan \left (x\right )} \]