6.176 Problems 17501 to 17600

Table 6.351: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17501

\[ {} y^{\prime \prime }+16 y = 0 \]

17502

\[ {} y^{\prime \prime }+8 y = 0 \]

17503

\[ {} y^{\prime \prime }+7 y = 0 \]

17504

\[ {} 4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

17505

\[ {} 7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

17506

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

17507

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

17508

\[ {} y^{\prime \prime }-y^{\prime } = 0 \]

17509

\[ {} 3 y^{\prime \prime }-y^{\prime } = 0 \]

17510

\[ {} y^{\prime \prime }+y^{\prime }-12 y = 0 \]

17511

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

17512

\[ {} 2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

17513

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

17514

\[ {} y^{\prime \prime }+36 y = 0 \]

17515

\[ {} y^{\prime \prime }+100 y = 0 \]

17516

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17517

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

17518

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

17519

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

17520

\[ {} y^{\prime \prime }+y^{\prime }-y = 0 \]

17521

\[ {} y^{\prime \prime }+y^{\prime }+y = 0 \]

17522

\[ {} y^{\prime \prime }-y^{\prime }+y = 0 \]

17523

\[ {} y^{\prime \prime }-y^{\prime }-y = 0 \]

17524

\[ {} 6 y^{\prime \prime }+5 y^{\prime }+y = 0 \]

17525

\[ {} 9 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

17526

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

17527

\[ {} 3 t^{2} y^{\prime \prime }-2 t y^{\prime }+2 y = 0 \]

17528

\[ {} t^{2} y^{\prime \prime }-t y^{\prime }+y = 0 \]

17529

\[ {} a y^{\prime \prime }+2 b y^{\prime }+c y = 0 \]

17530

\[ {} y^{\prime \prime }+6 y^{\prime }+2 y = 0 \]

17531

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

17532

\[ {} y^{\prime \prime }-6 y^{\prime }-16 y = 0 \]

17533

\[ {} y^{\prime \prime }-16 y = 0 \]

17534

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

17535

\[ {} {y^{\prime \prime }}^{2}-5 y^{\prime \prime } y^{\prime }+4 y^{2} = 0 \]

17536

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime } y^{\prime }+y^{2} = 0 \]

17537

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 0 \]

17538

\[ {} y^{\prime \prime }+y = 8 \,{\mathrm e}^{2 t} \]

17539

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = -{\mathrm e}^{-9 t} \]

17540

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 2 \,{\mathrm e}^{3 t} \]

17541

\[ {} y^{\prime \prime }-y = 2 t -4 \]

17542

\[ {} y^{\prime \prime }-2 y^{\prime }+y = t^{2} \]

17543

\[ {} y^{\prime \prime }+2 y^{\prime } = 3-4 t \]

17544

\[ {} y^{\prime \prime }+y = \cos \left (2 t \right ) \]

17545

\[ {} y^{\prime \prime }+4 y = 4 \cos \left (t \right )-\sin \left (t \right ) \]

17546

\[ {} y^{\prime \prime }+4 y = \cos \left (2 t \right )+t \]

17547

\[ {} y^{\prime \prime }+4 y = 3 t \,{\mathrm e}^{-t} \]

17548

\[ {} y^{\prime \prime } = 3 t^{4}-2 t \]

17549

\[ {} y^{\prime \prime }-4 y^{\prime }+13 y = 2 t \,{\mathrm e}^{-2 t} \sin \left (3 t \right ) \]

17550

\[ {} y^{\prime \prime }+y^{\prime }-2 y = -1 \]

17551

\[ {} 5 y^{\prime \prime }+y^{\prime }-4 y = -3 \]

17552

\[ {} y^{\prime \prime }-2 y^{\prime }-8 y = 32 t \]

17553

\[ {} 16 y^{\prime \prime }-8 y^{\prime }-15 y = 75 t \]

17554

\[ {} y^{\prime \prime }+2 y^{\prime }+26 y = -338 t \]

17555

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = -32 t^{2} \]

17556

\[ {} 8 y^{\prime \prime }+6 y^{\prime }+y = 5 t^{2} \]

17557

\[ {} y^{\prime \prime }-6 y^{\prime }+8 y = -256 t^{3} \]

17558

\[ {} y^{\prime \prime }-2 y^{\prime } = 52 \sin \left (3 t \right ) \]

17559

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 25 \sin \left (2 t \right ) \]

17560

\[ {} y^{\prime \prime }-9 y = 54 t \sin \left (2 t \right ) \]

17561

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = -78 \cos \left (3 t \right ) \]

17562

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = -32 t^{2} \cos \left (2 t \right ) \]

17563

\[ {} y^{\prime \prime }-y^{\prime }-20 y = -2 \,{\mathrm e}^{t} \]

17564

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = -648 t^{2} {\mathrm e}^{5 t} \]

17565

\[ {} y^{\prime \prime }-7 y^{\prime }+12 y = -2 t^{3} {\mathrm e}^{4 t} \]

17566

\[ {} y^{\prime \prime }+4 y^{\prime } = 8 \,{\mathrm e}^{4 t}-4 \,{\mathrm e}^{-4 t} \]

17567

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

17568

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

17569

\[ {} y^{\prime \prime }-3 y^{\prime } = t^{2}-{\mathrm e}^{3 t} \]

17570

\[ {} y^{\prime \prime } = t^{2}+{\mathrm e}^{t}+\sin \left (t \right ) \]

17571

\[ {} y^{\prime \prime }+3 y^{\prime } = 18 \]

17572

\[ {} y^{\prime \prime }-y = 4 \]

17573

\[ {} y^{\prime \prime }-4 y = 32 t \]

17574

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = -2 \]

17575

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 3 t \]

17576

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = 4 \]

17577

\[ {} y^{\prime \prime }+7 y^{\prime }+10 y = t \,{\mathrm e}^{-t} \]

17578

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = -1 \]

17579

\[ {} y^{\prime \prime }-3 y^{\prime } = -{\mathrm e}^{3 t}-2 t \]

17580

\[ {} y^{\prime \prime }-y^{\prime } = -3 t -4 \,{\mathrm e}^{2 t} t^{2} \]

17581

\[ {} y^{\prime \prime }-2 y^{\prime } = 2 t^{2} \]

17582

\[ {} y^{\prime \prime }+4 y^{\prime } = -24 t -6-4 t \,{\mathrm e}^{-4 t}+{\mathrm e}^{-4 t} \]

17583

\[ {} y^{\prime \prime }-3 y^{\prime } = {\mathrm e}^{-3 t}-{\mathrm e}^{3 t} \]

17584

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 0 & \pi \le t \end {array}\right . \]

17585

\[ {} y^{\prime \prime }+9 \pi ^{2} y = \left \{\begin {array}{cc} 2 t & 0\le t <\pi \\ 2 t -2 \pi & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17586

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le t <\pi \\ 10 & \pi \le t <2 \pi \\ 0 & 2 \pi \le t \end {array}\right . \]

17587

\[ {} y^{\prime }-4 y = t^{2} \]

17588

\[ {} y+y^{\prime } = \cos \left (2 t \right ) \]

17589

\[ {} -y+y^{\prime } = {\mathrm e}^{4 t} \]

17590

\[ {} y^{\prime }+4 y = {\mathrm e}^{-4 t} \]

17591

\[ {} y^{\prime }+4 y = t \,{\mathrm e}^{-4 t} \]

17592

\[ {} y^{\prime \prime }+y^{\prime }-2 y = f \left (t \right ) \]

17593

\[ {} x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

17594

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+37 y = \cos \left (3 t \right ) \]

17595

\[ {} y^{\prime \prime }+4 y = 1 \]

17596

\[ {} y^{\prime \prime }+16 y^{\prime } = t \]

17597

\[ {} y^{\prime \prime }-7 y^{\prime }+10 y = {\mathrm e}^{3 t} \]

17598

\[ {} y^{\prime \prime }+16 y = 2 \cos \left (4 t \right ) \]

17599

\[ {} y^{\prime \prime }+4 y^{\prime }+20 y = 2 t \,{\mathrm e}^{-2 t} \]

17600

\[ {} y^{\prime \prime }+\frac {y}{4} = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]