6.177 Problems 17601 to 17700

Table 6.353: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17601

\[ {} y^{\prime \prime }+16 y = \csc \left (4 t \right ) \]

17602

\[ {} y^{\prime \prime }+16 y = \cot \left (4 t \right ) \]

17603

\[ {} y^{\prime \prime }+2 y^{\prime }+50 y = {\mathrm e}^{-t} \csc \left (7 t \right ) \]

17604

\[ {} y^{\prime \prime }+6 y^{\prime }+25 y = {\mathrm e}^{-3 t} \left (\sec \left (4 t \right )+\csc \left (4 t \right )\right ) \]

17605

\[ {} y^{\prime \prime }-2 y^{\prime }+26 y = {\mathrm e}^{t} \left (\sec \left (5 t \right )+\csc \left (5 t \right )\right ) \]

17606

\[ {} y^{\prime \prime }+12 y^{\prime }+37 y = {\mathrm e}^{-6 t} \csc \left (t \right ) \]

17607

\[ {} y^{\prime \prime }-6 y^{\prime }+34 y = {\mathrm e}^{3 t} \tan \left (5 t \right ) \]

17608

\[ {} y^{\prime \prime }-10 y^{\prime }+34 y = {\mathrm e}^{5 t} \cot \left (3 t \right ) \]

17609

\[ {} y^{\prime \prime }-12 y^{\prime }+37 y = {\mathrm e}^{6 t} \sec \left (t \right ) \]

17610

\[ {} y^{\prime \prime }-8 y^{\prime }+17 y = {\mathrm e}^{4 t} \sec \left (t \right ) \]

17611

\[ {} y^{\prime \prime }-9 y = \frac {1}{1+{\mathrm e}^{3 t}} \]

17612

\[ {} y^{\prime \prime }-25 y = \frac {1}{1-{\mathrm e}^{5 t}} \]

17613

\[ {} y^{\prime \prime }-y = 2 \sinh \left (t \right ) \]

17614

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{t}}{t} \]

17615

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 t}}{t^{2}} \]

17616

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{4}} \]

17617

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 t}}{t} \]

17618

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \ln \left (t \right ) \]

17619

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left ({\mathrm e}^{t}\right ) \]

17620

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = {\mathrm e}^{-2 t} \sqrt {-t^{2}+1} \]

17621

\[ {} y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{t} \sqrt {-t^{2}+1} \]

17622

\[ {} y^{\prime \prime }-10 y^{\prime }+25 y = {\mathrm e}^{5 t} \ln \left (2 t \right ) \]

17623

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{2 t} \arctan \left (t \right ) \]

17624

\[ {} y^{\prime \prime }+8 y^{\prime }+16 y = \frac {{\mathrm e}^{-4 t}}{t^{2}+1} \]

17625

\[ {} y^{\prime \prime }+y = \sec \left (\frac {t}{2}\right )+\csc \left (\frac {t}{2}\right ) \]

17626

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right )^{2} \]

17627

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \]

17628

\[ {} y^{\prime \prime }+9 y = \tan \left (3 t \right ) \]

17629

\[ {} y^{\prime \prime }+4 y = \tan \left (2 t \right ) \]

17630

\[ {} y^{\prime \prime }+16 y = \tan \left (2 t \right ) \]

17631

\[ {} y^{\prime \prime }+4 y = \tan \left (t \right ) \]

17632

\[ {} y^{\prime \prime }+9 y = \sec \left (3 t \right ) \tan \left (3 t \right ) \]

17633

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right ) \tan \left (2 t \right ) \]

17634

\[ {} y^{\prime \prime }+9 y = \frac {\csc \left (3 t \right )}{2} \]

17635

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )^{2} \]

17636

\[ {} y^{\prime \prime }-16 y = 16 t \,{\mathrm e}^{-4 t} \]

17637

\[ {} y^{\prime \prime }+y = \tan \left (t \right )^{2} \]

17638

\[ {} y^{\prime \prime }+4 y = \sec \left (2 t \right )+\tan \left (2 t \right ) \]

17639

\[ {} y^{\prime \prime }+9 y = \csc \left (3 t \right ) \]

17640

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = 65 \cos \left (2 t \right ) \]

17641

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+y = \ln \left (t \right ) \]

17642

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+4 y = t \]

17643

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }-6 y = 2 \ln \left (t \right ) \]

17644

\[ {} 4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \]

17645

\[ {} y^{\prime \prime }+4 y = f \left (t \right ) \]

17646

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = 0 \]

17647

\[ {} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y = t^{3}+2 t \]

17648

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = 0 \]

17649

\[ {} t y^{\prime \prime }+2 y^{\prime }+t y = -t \]

17650

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 0 \]

17651

\[ {} 4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (16 t^{2}-1\right ) y = 16 t^{{3}/{2}} \]

17652

\[ {} t^{2} \left (\ln \left (t \right )-1\right ) y^{\prime \prime }-t y^{\prime }+y = -\frac {3 \left (1+\ln \left (t \right )\right )}{4 \sqrt {t}} \]

17653

\[ {} \left (\sin \left (t \right )-\cos \left (t \right ) t \right ) y^{\prime \prime }-t \sin \left (t \right ) y^{\prime }+\sin \left (t \right ) y = t \]

17654

\[ {} y^{\prime \prime \prime } = 0 \]

17655

\[ {} y^{\prime \prime \prime }-10 y^{\prime \prime }+25 y^{\prime } = 0 \]

17656

\[ {} 8 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

17657

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime } = 0 \]

17658

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

17659

\[ {} 3 y^{\prime \prime \prime }-4 y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

17660

\[ {} 6 y^{\prime \prime \prime }-5 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

17661

\[ {} y^{\prime \prime \prime }-5 y^{\prime }+2 y = 0 \]

17662

\[ {} 5 y^{\prime \prime \prime }-15 y^{\prime }+11 y = 0 \]

17663

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

17664

\[ {} y^{\prime \prime \prime \prime }-9 y^{\prime \prime } = 0 \]

17665

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

17666

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }-y^{\prime \prime }+54 y^{\prime }-72 y = 0 \]

17667

\[ {} y^{\prime \prime \prime \prime }+7 y^{\prime \prime \prime }+6 y^{\prime \prime }-32 y^{\prime }-32 y = 0 \]

17668

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }+8 y = 0 \]

17669

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime \prime } = 0 \]

17670

\[ {} y^{\left (5\right )}+4 y^{\prime \prime \prime } = 0 \]

17671

\[ {} y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime } = 0 \]

17672

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

17673

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

17674

\[ {} y^{\left (6\right )}+3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }+y = 0 \]

17675

\[ {} y^{\left (6\right )}+12 y^{\prime \prime \prime \prime }+48 y^{\prime \prime }+64 y = 0 \]

17676

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17677

\[ {} y^{\prime \prime \prime }-y = 0 \]

17678

\[ {} y^{\prime \prime \prime \prime }+16 y^{\prime \prime \prime } = 0 \]

17679

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

17680

\[ {} 24 y^{\prime \prime \prime }-26 y^{\prime \prime }+9 y^{\prime }-y = 0 \]

17681

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

17682

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

17683

\[ {} 8 y^{\left (5\right )}+4 y^{\prime \prime \prime \prime }+66 y^{\prime \prime \prime }-41 y^{\prime \prime }-37 y^{\prime } = 0 \]

17684

\[ {} 2 y^{\left (5\right )}+7 y^{\prime \prime \prime \prime }+17 y^{\prime \prime \prime }+17 y^{\prime \prime }+5 y^{\prime } = 0 \]

17685

\[ {} y^{\left (5\right )}+8 y^{\prime \prime \prime \prime } = 0 \]

17686

\[ {} y^{\left (6\right )}-3 y^{\prime \prime \prime \prime }+3 y^{\prime \prime }-y = 0 \]

17687

\[ {} y^{\prime \prime \prime }+9 y^{\prime \prime }+16 y^{\prime }-26 y = 0 \]

17688

\[ {} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+60 y^{\prime \prime }+124 y^{\prime }+75 y = 0 \]

17689

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime }+6 y = 0 \]

17690

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+30 y^{\prime \prime }-56 y^{\prime }+49 y = 0 \]

17691

\[ {} \frac {31 y^{\prime \prime \prime }}{100}+\frac {56 y^{\prime \prime }}{5}-\frac {49 y^{\prime }}{5}+\frac {53 y}{10} = 0 \]

17692

\[ {} 2 y y^{\prime \prime }+y^{2} = {y^{\prime }}^{2} \]

17693

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = {\mathrm e}^{t} \]

17694

\[ {} y^{\prime \prime \prime \prime }-16 y = 1 \]

17695

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime } = 1 \]

17696

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 1 \]

17697

\[ {} y^{\prime \prime \prime \prime }+9 y^{\prime \prime } = 9 \,{\mathrm e}^{3 t} \]

17698

\[ {} y^{\prime \prime \prime }+10 y^{\prime \prime }+34 y^{\prime }+40 y = t \,{\mathrm e}^{-4 t}+2 \,{\mathrm e}^{-3 t} \cos \left (t \right ) \]

17699

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+11 y^{\prime }+6 y = 2 \,{\mathrm e}^{-3 t}-t \,{\mathrm e}^{-t} \]

17700

\[ {} y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-24 y^{\prime }+36 y = 108 t \]