| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x y^{\prime } = -\sqrt {x^{2}+y^{2}}+y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = \left (2 x +3 y\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+y^{3}-x y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{2 y}+\frac {y}{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+\sec \left (\frac {y}{x}\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -4 y+\left (3 x -2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sqrt {x^{2}+y^{2}}}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 x +5 y}{2 x -y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {6 x^{2}-5 x y-2 y^{2}}{6 x^{2}-8 x y+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x +y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {2 x +3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x +3 y+1}{3 x -2 y-5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3 x -y-9\right ) y^{\prime } = 10-2 x +2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +3 y+4 = \left (4 x +6 y+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +2 y+1+\left (x +y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \sin \left (\frac {y}{x}\right ) x +2 x \tan \left (\frac {y}{x}\right )-y \cos \left (\frac {y}{x}\right )-y \sec \left (\frac {y}{x}\right )^{2}+\left (\cos \left (\frac {y}{x}\right ) x +x \sec \left (\frac {y}{x}\right )^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {\sqrt {x +y}+\sqrt {x -y}}{\sqrt {x +y}-\sqrt {x -y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+\sqrt {x -y}}{1-\sqrt {x -y}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y}{x}+\frac {x^{3}}{y}+x \tan \left (\frac {y}{x^{2}}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x^{5}+3 x^{2} y^{2}}{2 x^{3} y-2 y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2+3 x y^{2}-4 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\left (x -3 y-5\right )^{2}}{\left (x +y-1\right )^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \sqrt {x +y+1}\, y^{\prime } = \sqrt {x +y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y \left (x y+1\right )}{x \left (1-x y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }-y = \arctan \left (\frac {y}{x}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x +4 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y}{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } x = x^{2}-y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{x +y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x -y \cos \left (x \right )}{\sin \left (x \right )+y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r^{\prime } = \frac {r \sin \left (t \right )}{2 r \cos \left (t \right )-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{-x}-\sin \left (x \right )-\left ({\mathrm e}^{-x}+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+\frac {y}{x}+\left (\ln \left (x \right )+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y \left (y-{\mathrm e}^{x}\right )}{{\mathrm e}^{x}-2 x y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+x \right ) y^{\prime }+2 x +1+2 \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y-2 x}{-x +2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 x -\sin \left (y\right )}{x \cos \left (y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 \sin \left (2 x \right )-\tan \left (y\right )}{x \sec \left (y\right )^{2}}
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+2 y \,{\mathrm e}^{2 x}\right ) y^{\prime }+2 x y+2 y^{2} {\mathrm e}^{2 x} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+2 x^{2}+y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (4 x -y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (x \right ) y^{\prime }-2 \sin \left (x \right ) y+3 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }+x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y}{\left (x +y\right )^{2}}-1+\left (1-\frac {x}{\left (x +y\right )^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{2}+2 y+\left (3 x^{2} y-4 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x +2 y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{3}-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2} \cos \left (x \right )-y+\left (x +y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +x^{3} \sin \left (2 y\right )\right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sin \left (y\right )}{x \cos \left (y\right )-\sin \left (y\right )^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \sin \left (x \right ) y-\cos \left (x \right )^{3}+\cos \left (x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {4 y}{x} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{y^{3}-3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime } = \frac {t -i t}{t^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}+2 y \,{\mathrm e}^{x}+\left ({\mathrm e}^{x}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x +y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 y^{2} \cot \left (x \right )+\cos \left (x \right ) \sin \left (x \right )}{2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{x^{2} y+y^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2}+y+3 x^{3} y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +2 x y^{2}+\left (x^{2} y+2 y+3 y^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{2}+x y+1+\left (x^{2}+x y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{2}+4 x^{2} y+\left (4 x y+3 x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {y}{x} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+3 y = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+y y^{\prime } x = \left (2 y^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{x} = \sin \left (3 x \right ) x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime }+3 i = {\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cot \left (x \right ) = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x -3 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = t -\frac {r}{3 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime }+2 i = 10 \,{\mathrm e}^{-2 t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (x y-x^{3}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-3 y^{\prime } = 4 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 x^{2} y+y \ln \left (y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+3 = 4 x \,{\mathrm e}^{-y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (2 x^{2} y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+\left (y^{3}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y+x^{3}+x y^{2}-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}+y+\left (x^{2} y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -\sqrt {x^{2}+y^{2}}+\left (-\sqrt {x^{2}+y^{2}}+y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+y+\left (x^{2}+y^{2}-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -x^{2}-y^{2}+\left (y+x^{2}+y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y+y^{3}-x +\left (x^{3}-y+x y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x \sqrt {x^{2}+y^{2}}+\left (x -y \sqrt {x^{2}+y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-y^{4} x^{5}+\left (x -x^{4} y^{5}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}-x y^{2}+y+\left (y^{3}-x^{2} y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3}+2 x y^{2}-x +\left (x^{2} y+2 y^{3}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {x^{3}+2 y}{x^{3}+x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{2}+x \sin \left (x \right )^{2}-\sin \left (2 x \right )-2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+y \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )-\left (x^{2}+x \left (x -y\right )^{2} \tan \left (\frac {y}{x}\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = \frac {x}{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime } = 3 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime \prime \prime } = {\mathrm e}^{x}-{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} i^{\prime \prime } = t^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime } = x^{2}+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3} y^{\prime \prime \prime } = 1+\sqrt {x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|