6.51 Problems 5001 to 5100

Table 6.101: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

5001

\[ {} x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y \]

5002

\[ {} \left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0 \]

5003

\[ {} x^{5} y^{\prime } = 1-3 x^{4} y \]

5004

\[ {} x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y \]

5005

\[ {} x^{7} y^{\prime }+5 y^{2} x^{3}+2 \left (x^{2}+1\right ) y^{3} = 0 \]

5006

\[ {} x^{n} y^{\prime } = a +b \,x^{n -1} y \]

5007

\[ {} x^{n} y^{\prime } = x^{-1+2 n}-y^{2} \]

5008

\[ {} x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (-n +1\right ) x^{n -1} y = 0 \]

5009

\[ {} x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2} \]

5010

\[ {} x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right ) \]

5011

\[ {} x^{k} y^{\prime } = a \,x^{m}+b y^{n} \]

5012

\[ {} \sqrt {x^{2}+1}\, y^{\prime } = 2 x -y \]

5013

\[ {} y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2} \]

5014

\[ {} \left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}} \]

5015

\[ {} y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}} \]

5016

\[ {} y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}} \]

5017

\[ {} y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}} \]

5018

\[ {} x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}} \]

5019

\[ {} x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}} \]

5020

\[ {} x^{{3}/{2}} y^{\prime } = a +b \,x^{{3}/{2}} y^{2} \]

5021

\[ {} y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1} \]

5022

\[ {} y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )} \]

5023

\[ {} y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}} \]

5024

\[ {} y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}} \]

5025

\[ {} y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}} = 0 \]

5026

\[ {} y^{\prime } \sqrt {x^{4} b +x^{2} a +1}+\sqrt {1+a y^{2}+y^{4} b} = 0 \]

5027

\[ {} y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}} = \sqrt {b_{0} +b_{1} y+b_{2} y^{2}} \]

5028

\[ {} y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}} = 0 \]

5029

\[ {} y^{\prime } \left (4 x^{3}+a_{1} x +a_{0} \right )^{{2}/{3}}+\left (a_{0} +y a_{1} +4 y^{3}\right )^{{2}/{3}} = 0 \]

5030

\[ {} y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right ) \]

5031

\[ {} \left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y \]

5032

\[ {} \left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

5033

\[ {} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0 \]

5034

\[ {} \left (a_{0} +a_{1} \sin \left (x \right )^{2}\right ) y^{\prime }+a_{2} x \left (a_{3} +a_{1} \sin \left (x \right )^{2}\right )+a_{1} y \sin \left (2 x \right ) = 0 \]

5035

\[ {} \left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (-{\mathrm e}^{x}+1\right ) y = 0 \]

5036

\[ {} x \ln \left (x \right ) y^{\prime } = a x \left (\ln \left (x \right )+1\right )-y \]

5037

\[ {} y y^{\prime }+x = 0 \]

5038

\[ {} y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0 \]

5039

\[ {} y y^{\prime }+x^{3}+y = 0 \]

5040

\[ {} y y^{\prime }+a x +b y = 0 \]

5041

\[ {} y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0 \]

5042

\[ {} y y^{\prime }+f \left (x \right ) = g \left (x \right ) y \]

5043

\[ {} y y^{\prime }+4 x \left (1+x \right )+y^{2} = 0 \]

5044

\[ {} y y^{\prime } = a x +b y^{2} \]

5045

\[ {} y y^{\prime } = b \cos \left (x +c \right )+a y^{2} \]

5046

\[ {} y y^{\prime } = a_{0} +y a_{1} +a_{2} y^{2} \]

5047

\[ {} y y^{\prime } = a x +b x y^{2} \]

5048

\[ {} y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right ) \]

5049

\[ {} y y^{\prime } = \sqrt {y^{2}+a^{2}} \]

5050

\[ {} y y^{\prime } = \sqrt {y^{2}-a^{2}} \]

5051

\[ {} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right ) = 0 \]

5052

\[ {} \left (1+y\right ) y^{\prime } = x +y \]

5053

\[ {} \left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right ) \]

5054

\[ {} \left (x +y\right ) y^{\prime }+y = 0 \]

5055

\[ {} \left (x -y\right ) y^{\prime } = y \]

5056

\[ {} \left (x +y\right ) y^{\prime }+x -y = 0 \]

5057

\[ {} \left (x +y\right ) y^{\prime } = x -y \]

5058

\[ {} 1-y^{\prime } = x +y \]

5059

\[ {} \left (x -y\right ) y^{\prime } = y \left (2 x y+1\right ) \]

5060

\[ {} \left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0 \]

5061

\[ {} \left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y \]

5062

\[ {} \left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0 \]

5063

\[ {} \left (x +y+2\right ) y^{\prime } = 1-x -y \]

5064

\[ {} \left (3-x -y\right ) y^{\prime } = 1+x -3 y \]

5065

\[ {} \left (y-x +3\right ) y^{\prime } = 11-4 x +3 y \]

5066

\[ {} \left (y+2 x \right ) y^{\prime }+x -2 y = 0 \]

5067

\[ {} \left (2 x -y+2\right ) y^{\prime }+3+6 x -3 y = 0 \]

5068

\[ {} \left (2 x -y+3\right ) y^{\prime }+2 = 0 \]

5069

\[ {} \left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0 \]

5070

\[ {} \left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0 \]

5071

\[ {} \left (1-3 x +y\right ) y^{\prime } = 2 x -2 y \]

5072

\[ {} \left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0 \]

5073

\[ {} \left (4 x -y\right ) y^{\prime }+2 x -5 y = 0 \]

5074

\[ {} \left (6-4 x -y\right ) y^{\prime } = 2 x -y \]

5075

\[ {} \left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0 \]

5076

\[ {} \left (a +b x +y\right ) y^{\prime }+a -b x -y = 0 \]

5077

\[ {} \left (-y+x^{2}\right ) y^{\prime }+x = 0 \]

5078

\[ {} \left (-y+x^{2}\right ) y^{\prime } = 4 x y \]

5079

\[ {} \left (y-\csc \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y = 0 \]

5080

\[ {} 2 y y^{\prime }+2 x +x^{2}+y^{2} = 0 \]

5081

\[ {} 2 y y^{\prime } = x y^{2}+x^{3} \]

5082

\[ {} \left (x -2 y\right ) y^{\prime } = y \]

5083

\[ {} \left (2 y+x \right ) y^{\prime }+2 x -y = 0 \]

5084

\[ {} \left (x -2 y\right ) y^{\prime }+2 x +y = 0 \]

5085

\[ {} \left (x -2 y+1\right ) y^{\prime } = 1+2 x -y \]

5086

\[ {} \left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0 \]

5087

\[ {} \left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0 \]

5088

\[ {} 2 \left (x +y\right ) y^{\prime }+x^{2}+2 y = 0 \]

5089

\[ {} \left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y \]

5090

\[ {} \left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0 \]

5091

\[ {} \left (6 x -2 y\right ) y^{\prime } = 2+3 x -y \]

5092

\[ {} \left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0 \]

5093

\[ {} \left (x^{3}+2 y\right ) y^{\prime } = 3 x \left (2-x y\right ) \]

5094

\[ {} \left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 \sin \left (x \right ) y\right ) y = 0 \]

5095

\[ {} \left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y \]

5096

\[ {} 3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0 \]

5097

\[ {} 3 \left (2-y\right ) y^{\prime }+x y = 0 \]

5098

\[ {} \left (x -3 y\right ) y^{\prime }+4+3 x -y = 0 \]

5099

\[ {} \left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0 \]

5100

\[ {} \left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y \]