| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x \left (-2 x^{3}+1\right ) y^{\prime } = 2 \left (-x^{3}+1\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (c \,x^{2}+b x +a \right )^{2} \left (y^{\prime }+y^{2}\right )+A = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{5} y^{\prime } = 1-3 x^{4} y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (-x^{4}+1\right ) y^{\prime } = 2 x \left (x^{2}-y^{2}\right )+\left (-x^{4}+1\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{7} y^{\prime }+5 y^{2} x^{3}+2 \left (x^{2}+1\right ) y^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime } = a +b \,x^{n -1} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime } = x^{-1+2 n}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime }+x^{2 n -2}+y^{2}+\left (-n +1\right ) x^{n -1} y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime } = a^{2} x^{2 n -2}+b^{2} y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{n} y^{\prime } = x^{n -1} \left (a \,x^{2 n}+n y-b y^{2}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{k} y^{\prime } = a \,x^{m}+b y^{n}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \sqrt {x^{2}+1}\, y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{2}+1} = 1+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -\sqrt {x^{2}+1}\right ) y^{\prime } = y+\sqrt {1+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {a^{2}+x^{2}}+x +y = \sqrt {a^{2}+x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {b^{2}+x^{2}} = \sqrt {y^{2}+a^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {b^{2}-x^{2}} = \sqrt {a^{2}-y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } \sqrt {a^{2}+x^{2}} = y \sqrt {b^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } \sqrt {-a^{2}+x^{2}} = y \sqrt {y^{2}-b^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{{3}/{2}} y^{\prime } = a +b \,x^{{3}/{2}} y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } \sqrt {x^{3}+1} = \sqrt {y^{3}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {x \left (1-x \right ) \left (-a x +1\right )} = \sqrt {y \left (1-y\right ) \left (1-a y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {-x^{4}+1} = \sqrt {1-y^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {x^{4}+x^{2}+1} = \sqrt {1+y^{2}+y^{4}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {x^{4} b +x^{2} a +1}+\sqrt {1+a y^{2}+y^{4} b} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sqrt {a_{4} x^{4}+a_{3} x^{3}+a_{2} x^{2}+a_{1} x +a_{0}} = \sqrt {b_{0} +b_{1} y+b_{2} y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (x^{3}+1\right )^{{2}/{3}}+\left (y^{3}+1\right )^{{2}/{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (4 x^{3}+a_{1} x +a_{0} \right )^{{2}/{3}}+\left (a_{0} +y a_{1} +4 y^{3}\right )^{{2}/{3}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (a +\cos \left (\frac {x}{2}\right )^{2}\right ) = y \tan \left (\frac {x}{2}\right ) \left (1+a +\cos \left (\frac {x}{2}\right )^{2}-y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-4 \cos \left (x \right )^{2}\right ) y^{\prime } = \tan \left (x \right ) \left (1+4 \cos \left (x \right )^{2}\right ) y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-\sin \left (x \right )\right ) y^{\prime }+y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\cos \left (x \right )-\sin \left (x \right )\right ) y^{\prime }+y \left (\cos \left (x \right )+\sin \left (x \right )\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (a_{0} +a_{1} \sin \left (x \right )^{2}\right ) y^{\prime }+a_{2} x \left (a_{3} +a_{1} \sin \left (x \right )^{2}\right )+a_{1} y \sin \left (2 x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -{\mathrm e}^{x}\right ) y^{\prime }+x \,{\mathrm e}^{x}+\left (-{\mathrm e}^{x}+1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \ln \left (x \right ) y^{\prime } = a x \left (\ln \left (x \right )+1\right )-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x \,{\mathrm e}^{x^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x^{3}+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+a x +b y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+x \,{\mathrm e}^{-x} \left (1+y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+f \left (x \right ) = g \left (x \right ) y
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+4 x \left (1+x \right )+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = a x +b y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = b \cos \left (x +c \right )+a y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = a_{0} +y a_{1} +a_{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = a x +b x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \csc \left (x \right )^{2}-y^{2} \cot \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \sqrt {y^{2}+a^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } = \sqrt {y^{2}-a^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+x +f \left (x^{2}+y^{2}\right ) g \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime } = x +y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y\right ) y^{\prime } = x^{2} \left (1-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime }+x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right ) y^{\prime } = x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1-y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right ) y^{\prime } = y \left (2 x y+1\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +y\right ) y^{\prime }+\tan \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -y\right ) y^{\prime } = \left ({\mathrm e}^{-\frac {x}{y}}+1\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x +y+1\right ) y^{\prime }+1+4 x +3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y+2\right ) y^{\prime } = 1-x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3-x -y\right ) y^{\prime } = 1+x -3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-x +3\right ) y^{\prime } = 11-4 x +3 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y+2 x \right ) y^{\prime }+x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -y+2\right ) y^{\prime }+3+6 x -3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -y+3\right ) y^{\prime }+2 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4+2 x -y\right ) y^{\prime }+5+x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (5-2 x -y\right ) y^{\prime }+4-x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-3 x +y\right ) y^{\prime } = 2 x -2 y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (2-3 x +y\right ) y^{\prime }+5-2 x -3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (4 x -y\right ) y^{\prime }+2 x -5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (6-4 x -y\right ) y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+5 x -y\right ) y^{\prime }+5+x -5 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (a +b x +y\right ) y^{\prime }+a -b x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-y+x^{2}\right ) y^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (-y+x^{2}\right ) y^{\prime } = 4 x y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (y-\csc \left (x \right ) \cot \left (x \right )\right ) y^{\prime }+\csc \left (x \right ) \left (1+y \cos \left (x \right )\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime }+2 x +x^{2}+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y y^{\prime } = x y^{2}+x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2 y\right ) y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 y+x \right ) y^{\prime }+2 x -y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2 y\right ) y^{\prime }+2 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2 y+1\right ) y^{\prime } = 1+2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2 y+1\right ) y^{\prime }+1-x -2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +2 y+1\right ) y^{\prime }+7+x -4 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 \left (x +y\right ) y^{\prime }+x^{2}+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (3+2 x -2 y\right ) y^{\prime } = 1+6 x -2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1-4 x -2 y\right ) y^{\prime }+2 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (6 x -2 y\right ) y^{\prime } = 2+3 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (19+9 x +2 y\right ) y^{\prime }+18-2 x -6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+2 y\right ) y^{\prime } = 3 x \left (2-x y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (\tan \left (x \right ) \sec \left (x \right )-2 y\right ) y^{\prime }+\sec \left (x \right ) \left (1+2 \sin \left (x \right ) y\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x \,{\mathrm e}^{-x}-2 y\right ) y^{\prime } = 2 x \,{\mathrm e}^{-2 x}-\left ({\mathrm e}^{-x}+x \,{\mathrm e}^{-x}-2 y\right ) y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime }+5 \cot \left (x \right ) \cot \left (y\right ) \cos \left (y\right )^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 \left (2-y\right ) y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -3 y\right ) y^{\prime }+4+3 x -y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (4-x -3 y\right ) y^{\prime }+3-x -3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x +3 y+2\right ) y^{\prime } = 1-2 x -3 y
\]
|
✓ |
✓ |
✓ |
|