5.4.4 Problems 301 to 400

Table 5.203: Problems solved by Maple only

#

ODE

Mathematica

Maple

Sympy

18450

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = \frac {x +6}{x^{2}} \]

18452

\[ {} -y+x y^{\prime }+\left (1-x \right ) y^{\prime \prime } = \left (x -1\right )^{2} {\mathrm e}^{x} \]

18453

\[ {} 2 x^{2} \left (2-\ln \left (x \right )\right ) y^{\prime \prime }+x \left (4-\ln \left (x \right )\right ) y^{\prime }-y = \frac {\left (2-\ln \left (x \right )\right )^{2}}{\sqrt {x}} \]

18454

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x}-y = 4 \,{\mathrm e}^{x} \]

18455

\[ {} x^{3} \left (\ln \left (x \right )-1\right ) y^{\prime \prime }-x^{2} y^{\prime }+x y = 2 \ln \left (x \right ) \]

18456

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+\left (-x^{2}+2\right ) y^{\prime }-2 \left (1-x \right ) y = -2+2 x \]

18492

\[ {} y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

18521

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {x \left (t \right )-t}{x \left (t \right )+y \left (t \right )}\right ] \]

18523

\[ {} \left [x^{\prime }\left (t \right ) = \frac {y \left (t \right )+t}{x \left (t \right )+y \left (t \right )}, y^{\prime }\left (t \right ) = \frac {t +x \left (t \right )}{x \left (t \right )+y \left (t \right )}\right ] \]

18534

\[ {} [x^{\prime \prime }\left (t \right ) = x \left (t \right )^{2}+y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right ) x^{\prime }\left (t \right )+x \left (t \right )] \]

18621

\[ {} y^{\prime } = \frac {t \left (4-y\right ) y}{3} \]

18749

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+4, y^{\prime }\left (t \right ) = -2 x \left (t \right )+\sin \left (t \right ) y \left (t \right )] \]

19234

\[ {} y = \frac {k \left (y y^{\prime }+x \right )}{\sqrt {1+{y^{\prime }}^{2}}} \]

19322

\[ {} y^{\prime \prime }-4 x y^{\prime }+\left (4 x^{2}-1\right ) y = -3 \,{\mathrm e}^{x^{2}} \sin \left (2 x \right ) \]

19482

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

19573

\[ {} y^{\prime \prime }-f \left (x \right ) y^{\prime }+\left (f \left (x \right )-1\right ) y = 0 \]

19745

\[ {} x y^{\prime \prime }+\left (2 x +3\right ) y^{\prime }+\left (x +3\right ) y = 3 \,{\mathrm e}^{-x} \]

19898

\[ {} y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime \prime }}^{2}+3 y^{\prime \prime } {y^{\prime }}^{2}-2 {y^{\prime }}^{4}-x {y^{\prime }}^{5} = 0 \]

19900

\[ {} y^{2} y^{\prime \prime \prime }-\left (3 y y^{\prime }+2 x y^{2}\right ) y^{\prime \prime }+\left (2 {y^{\prime }}^{2}+2 y y^{\prime } x +3 x^{2} y^{2}\right ) y^{\prime }+x^{3} y^{3} = 0 \]

20125

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

20127

\[ {} {y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

20128

\[ {} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

20129

\[ {} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

20144

\[ {} y^{2}-2 y y^{\prime } x +{y^{\prime }}^{2} \left (x^{2}-1\right ) = m^{2} \]

20233

\[ {} x^{5} y^{\prime \prime }+3 x^{3} y^{\prime }+\left (3-6 x \right ) x^{2} y = x^{4}+2 x -5 \]

20272

\[ {} {y^{\prime }}^{2}-y y^{\prime \prime } = n \sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} \]

20425

\[ {} {x^{\prime }}^{2} = k^{2} \left (1-{\mathrm e}^{-\frac {2 g x}{k^{2}}}\right ) \]

20510

\[ {} x^{2} {y^{\prime }}^{3}+y \left (x^{2} y+1\right ) {y^{\prime }}^{2}+y^{2} y^{\prime } = 0 \]

20544

\[ {} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

20684

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

20717

\[ {} y y^{\prime \prime }+\sqrt {{y^{\prime }}^{2}+a^{2} {y^{\prime \prime }}^{2}} = {y^{\prime }}^{2} \]

20783

\[ {} x y^{\prime \prime } \left (x \cos \left (x \right )-2 \sin \left (x \right )\right )+\left (x^{2}+2\right ) y^{\prime } \sin \left (x \right )-2 y \left (x \sin \left (x \right )+\cos \left (x \right )\right ) = 0 \]

20834

\[ {} {y^{\prime }}^{3}+m {y^{\prime }}^{2} = a \left (y+m x \right ) \]

20836

\[ {} y^{\prime } = \tan \left (x -\frac {y^{\prime }}{1+{y^{\prime }}^{2}}\right ) \]

20839

\[ {} {\mathrm e}^{3 x} \left (y^{\prime }-1\right )+{\mathrm e}^{2 y} {y^{\prime }}^{3} = 0 \]

20848

\[ {} \left (1-y^{2}+\frac {y^{4}}{x^{2}}\right ) {y^{\prime }}^{2}-\frac {2 y y^{\prime }}{x}+\frac {y^{2}}{x^{2}} = 0 \]

20855

\[ {} {y^{\prime }}^{3}-4 y y^{\prime } x +8 y^{2} = 0 \]

20858

\[ {} x^{2} {y^{\prime }}^{3}+\left (y+2 x \right ) y y^{\prime }+y^{2} = 0 \]

20904

\[ {} y^{\prime \prime }+\left (1+\frac {2 \cot \left (x \right )}{x}-\frac {2}{x^{2}}\right ) y = x \cos \left (x \right ) \]

21185

\[ {} 3 x^{2}-y+\left (4 y^{3}-x \right ) y^{\prime } = 0 \]

21280

\[ {} x^{\prime \prime }-2 x^{\prime } \left (x-1\right ) = 0 \]

21300

\[ {} x^{\prime \prime \prime }+a x^{\prime \prime }+b x^{\prime }+c x = 0 \]

21301

\[ {} x^{\prime \prime \prime }-3 x^{\prime }+k x = 0 \]

21366

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-7 x \left (t \right ) y \left (t \right )-a x \left (t \right ), y^{\prime }\left (t \right ) = -y \left (t \right )+4 x \left (t \right ) y \left (t \right )-a y \left (t \right )] \]

21371

\[ {} x^{\prime \prime } = x^{3}-x \]

21372

\[ {} x^{\prime \prime } = x^{3}-x \]

21373

\[ {} x^{\prime \prime } = x^{3}-x \]

21376

\[ {} x^{\prime \prime } = x-x^{3} \]

21377

\[ {} x^{\prime \prime }+x+8 x^{7} = 0 \]

21378

\[ {} x^{\prime \prime }+x+\frac {x^{2}}{3} = 0 \]

21380

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21381

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21382

\[ {} x^{\prime \prime }-x+3 x^{2} = 0 \]

21436

\[ {} x^{\prime \prime }+6 x^{5} = 0 \]

21437

\[ {} x^{\prime \prime }+\lambda x-x^{3} = 0 \]

21438

\[ {} x^{\prime \prime }+4 x^{3} = 0 \]

21444

\[ {} -x^{\prime \prime } = 2 x-x^{2} \]

21445

\[ {} -x^{\prime \prime } = \arctan \left (x\right ) \]

21567

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21575

\[ {} x u^{\prime \prime }-\left (x^{2} {\mathrm e}^{x}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u = 0 \]

21724

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21879

\[ {} y^{\prime \prime } = {\mathrm e}^{y} y^{\prime } \]

21890

\[ {} y {y^{\prime }}^{2}-\left (x y+x +y^{2}\right ) y^{\prime }+x^{2}+x y = 0 \]

21902

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = x \left (t \right )^{2}-y \left (t \right )] \]

21965

\[ {} 3 x^{2}-2 x y+\left (4 y^{3}-x^{2}\right ) y^{\prime } = 0 \]

21974

\[ {} 2 {y^{\prime }}^{3}+3 {y^{\prime }}^{2} = x +y \]

21978

\[ {} 2 x +y y^{\prime } \left (4 {y^{\prime }}^{2}+6\right ) = 0 \]

22354

\[ {} y^{\prime \prime \prime }+y^{\prime } = {\mathrm e}^{t} \]

22382

\[ {} [w^{\prime \prime }\left (t \right )+y \left (t \right )+z \left (t \right ) = -1, w \left (t \right )+y^{\prime \prime }\left (t \right )-z \left (t \right ) = 0, -w \left (t \right )-y^{\prime }\left (t \right )+z^{\prime \prime }\left (t \right ) = 0] \]

22452

\[ {} {| y^{\prime }|}+1 = 0 \]

22456

\[ {} y^{\prime } = \frac {1}{x^{2}+y^{2}} \]

22457

\[ {} y^{\prime } = \frac {1}{x^{2}+y^{2}} \]

22459

\[ {} y^{\prime } = \frac {x -2 y}{y-2 x} \]

22460

\[ {} y^{\prime } = \frac {1}{x^{2}-y^{2}} \]

22470

\[ {} y^{\prime } = \frac {1}{x^{2}+4 y^{2}} \]

22921

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \left (2+x y^{\prime }-4 y^{2} y^{\prime }\right ) \]

23008

\[ {} [x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = \sin \left (t \right )] \]

23015

\[ {} [t^{2} y^{\prime \prime }\left (t \right )+t z^{\prime }\left (t \right )+z \left (t \right ) = t, t y^{\prime }\left (t \right )+z \left (t \right ) = \ln \left (t \right )] \]

23262

\[ {} y^{4}+\left (x^{2}-3 y\right ) y^{\prime } = 0 \]

23364

\[ {} y^{\prime }+\sqrt {y} = 3 x \]

23373

\[ {} \left (1+a \cos \left (2 x \right )\right ) y^{\prime \prime }+\lambda y = 0 \]

23415

\[ {} y^{\prime \prime } \cos \left (x \right )+y = \sin \left (x \right ) \]

23532

\[ {} x \left (1-3 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+9 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (3+9 x \right ) y = 0 \]

23534

\[ {} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = 0 \]

23669

\[ {} x \left (1-2 x \ln \left (x \right )\right ) y^{\prime \prime }+\left (1+4 x^{2} \ln \left (x \right )\right ) y^{\prime }-\left (4 x +2\right ) y = {\mathrm e}^{2 x} \left (1-2 x \ln \left (x \right )\right )^{2} \]

23916

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )-x \left (t \right )^{2}+y \left (t \right )^{2}, y^{\prime }\left (t \right ) = -y \left (t \right )+2 x \left (t \right ) y \left (t \right )] \]

24001

\[ {} \sec \left (x -2 y\right )^{2}+\cos \left (3 y+x \right )-3 \sin \left (3 x \right )+\left (3 \cos \left (3 y+x \right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime } = 0 \]

24263

\[ {} \left (2 a^{2}-r^{2}\right ) r^{\prime } = r^{3} \sin \left (\theta \right ) \]

24321

\[ {} \frac {1}{\left (1-x y\right )^{2}}+\left (y^{2}+\frac {x^{2}}{\left (1-x y\right )^{2}}\right ) y^{\prime } = 0 \]

24343

\[ {} y \left (x^{3} y^{3}+2 x^{2}-y\right )+x^{3} \left (x y^{3}-2\right ) y^{\prime } = 0 \]

24930

\[ {} y = x^{6} {y^{\prime }}^{3}-x y^{\prime } \]

24935

\[ {} 2 {y^{\prime }}^{3}+x y^{\prime }-2 y = 0 \]

24937

\[ {} {y^{\prime }}^{3}+2 x y^{\prime }-y = 0 \]

24957

\[ {} y^{2} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24960

\[ {} y^{3} {y^{\prime }}^{3}-x y^{\prime }+y = 0 \]

24970

\[ {} {y^{\prime }}^{4}+x y^{\prime }-3 y = 0 \]

24973

\[ {} 16 x {y^{\prime }}^{2}+8 y y^{\prime }+y^{6} = 0 \]

24975

\[ {} {y^{\prime }}^{3}-2 x y^{\prime }+y = 0 \]

25020

\[ {} {y^{\prime \prime }}^{2}-2 y^{\prime \prime }+{y^{\prime }}^{2}-2 x y^{\prime }+x^{2} = 0 \]

25022

\[ {} {y^{\prime \prime }}^{3} = 12 y^{\prime } \left (x y^{\prime \prime }-2 y^{\prime }\right ) \]