4.1.73 Problems 7201 to 7300

Table 4.145: First order ode

#

ODE

Mathematica

Maple

Sympy

17287

\[ {} y^{\prime }-\frac {y}{t} = \ln \left (t \right ) \]

17289

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <2 \\ 0 & 2\le t \end {array}\right . \]

17290

\[ {} y+y^{\prime } = \left \{\begin {array}{cc} t & 0\le t <1 \\ 0 & 1\le t \end {array}\right . \]

17291

\[ {} -y+y^{\prime } = \sin \left (2 t \right ) \]

17292

\[ {} y+y^{\prime } = 5 \,{\mathrm e}^{2 t} \]

17293

\[ {} y+y^{\prime } = {\mathrm e}^{-t} \]

17294

\[ {} y+y^{\prime } = 2-{\mathrm e}^{2 t} \]

17295

\[ {} y^{\prime }-5 y = t \]

17296

\[ {} 3 y+y^{\prime } = 27 t^{2}+9 \]

17297

\[ {} -\frac {y}{2}+y^{\prime } = 5 \cos \left (t \right )+2 \,{\mathrm e}^{t} \]

17298

\[ {} y^{\prime }+4 y = 8 \cos \left (4 t \right ) \]

17299

\[ {} y^{\prime }+10 y = 2 \,{\mathrm e}^{t} \]

17300

\[ {} y^{\prime }-3 y = 27 t^{2} \]

17301

\[ {} -y+y^{\prime } = 2 \,{\mathrm e}^{t} \]

17302

\[ {} y+y^{\prime } = 4+3 \,{\mathrm e}^{t} \]

17303

\[ {} y+y^{\prime } = 2 \cos \left (t \right )+t \]

17304

\[ {} \frac {y}{2}+y^{\prime } = \sin \left (t \right ) \]

17305

\[ {} -\frac {y}{2}+y^{\prime } = \sin \left (t \right ) \]

17306

\[ {} t y^{\prime }+y = \cos \left (t \right ) t \]

17307

\[ {} y+y^{\prime } = t \]

17308

\[ {} y+y^{\prime } = \sin \left (t \right ) \]

17309

\[ {} y+y^{\prime } = \cos \left (t \right ) \]

17310

\[ {} y+y^{\prime } = {\mathrm e}^{t} \]

17311

\[ {} y^{2}-\frac {y}{2 \sqrt {t}}+\left (2 t y-\sqrt {t}+1\right ) y^{\prime } = 0 \]

17312

\[ {} \frac {t}{\sqrt {t^{2}+y^{2}}}+\frac {y y^{\prime }}{\sqrt {t^{2}+y^{2}}} = 0 \]

17313

\[ {} y \cos \left (t y\right )+t \cos \left (t y\right ) y^{\prime } = 0 \]

17314

\[ {} \sec \left (t \right )^{2} y+2 t +\tan \left (t \right ) y^{\prime } = 0 \]

17315

\[ {} 3 t y^{2}+y^{3} y^{\prime } = 0 \]

17316

\[ {} t -\sin \left (t \right ) y+\left (y^{6}+\cos \left (t \right )\right ) y^{\prime } = 0 \]

17317

\[ {} y \sin \left (2 t \right )+\left (\sqrt {y}+\cos \left (2 t \right )\right ) y^{\prime } = 0 \]

17318

\[ {} \ln \left (t y\right )+\frac {t y^{\prime }}{y} = 0 \]

17319

\[ {} {\mathrm e}^{t y}+\frac {t \,{\mathrm e}^{t y} y^{\prime }}{y} = 0 \]

17320

\[ {} 3 t^{2}-y^{\prime } = 0 \]

17321

\[ {} -1+3 y^{2} y^{\prime } = 0 \]

17322

\[ {} y^{2}+2 t y y^{\prime } = 0 \]

17323

\[ {} \frac {3 t^{2}}{y}-\frac {t^{3} y^{\prime }}{y^{2}} = 0 \]

17324

\[ {} 2 t +y^{3}+\left (3 t y^{2}+4\right ) y^{\prime } = 0 \]

17325

\[ {} -\frac {1}{y}+\left (\frac {t}{y^{2}}+3 y^{2}\right ) y^{\prime } = 0 \]

17326

\[ {} 2 t y+\left (t^{2}+y^{2}\right ) y^{\prime } = 0 \]

17327

\[ {} 2 t y^{3}+\left (1+3 t^{2} y^{2}\right ) y^{\prime } = 0 \]

17328

\[ {} \sin \left (y\right )^{2}+t \sin \left (2 y\right ) y^{\prime } = 0 \]

17329

\[ {} 3 t^{2}+3 y^{2}+6 t y y^{\prime } = 0 \]

17330

\[ {} {\mathrm e}^{t} \sin \left (y\right )+\left (1+{\mathrm e}^{t} \cos \left (y\right )\right ) y^{\prime } = 0 \]

17331

\[ {} 3 t^{2} y+3 y^{2}-1+\left (t^{3}+6 t y\right ) y^{\prime } = 0 \]

17332

\[ {} -2 t y^{2} \sin \left (t^{2}\right )+2 y \cos \left (t^{2}\right ) y^{\prime } = 0 \]

17333

\[ {} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

17334

\[ {} 1-y^{2} \cos \left (t y\right )+\left (t y \cos \left (t y\right )+\sin \left (t y\right )\right ) y^{\prime } = 0 \]

17335

\[ {} 2 t \sin \left (y\right )-2 t y \sin \left (t^{2}\right )+\left (t^{2} \cos \left (y\right )+\cos \left (t^{2}\right )\right ) y^{\prime } = 0 \]

17336

\[ {} \left (3+t \right ) \cos \left (y+t \right )+\sin \left (y+t \right )+\left (3+t \right ) \cos \left (y+t \right ) y^{\prime } = 0 \]

17337

\[ {} \frac {2 t^{2} y \cos \left (t^{2}\right )-y \sin \left (t^{2}\right )}{t^{2}}+\frac {\left (2 t y+\sin \left (t^{2}\right )\right ) y^{\prime }}{t} = 0 \]

17338

\[ {} -\frac {y^{2} {\mathrm e}^{\frac {y}{t}}}{t^{2}}+1+{\mathrm e}^{\frac {y}{t}} \left (1+\frac {y}{t}\right ) y^{\prime } = 0 \]

17339

\[ {} 2 t \sin \left (\frac {y}{t}\right )-y \cos \left (\frac {y}{t}\right )+t \cos \left (\frac {y}{t}\right ) y^{\prime } = 0 \]

17340

\[ {} 2 t y^{2}+2 t^{2} y y^{\prime } = 0 \]

17341

\[ {} 1+\frac {y}{t^{2}}-\frac {y^{\prime }}{t} = 0 \]

17342

\[ {} 2 t y+3 t^{2}+\left (t^{2}-1\right ) y^{\prime } = 0 \]

17343

\[ {} 1+5 t -y-\left (t +2 y\right ) y^{\prime } = 0 \]

17344

\[ {} {\mathrm e}^{y}-2 t y+\left (t \,{\mathrm e}^{y}-t^{2}\right ) y^{\prime } = 0 \]

17345

\[ {} 2 t y \,{\mathrm e}^{t^{2}}+2 t \,{\mathrm e}^{-y}+\left ({\mathrm e}^{t^{2}}-t^{2} {\mathrm e}^{-y}+1\right ) y^{\prime } = 0 \]

17346

\[ {} y^{2}-2 \sin \left (2 t \right )+\left (1+2 t y\right ) y^{\prime } = 0 \]

17347

\[ {} \cos \left (t \right )^{2}-\sin \left (t \right )^{2}+y+\left (\sec \left (y\right ) \tan \left (y\right )+t \right ) y^{\prime } = 0 \]

17348

\[ {} \frac {1}{t^{2}+1}-y^{2}-2 t y y^{\prime } = 0 \]

17349

\[ {} \frac {2 t}{t^{2}+1}+y+\left ({\mathrm e}^{y}+t \right ) y^{\prime } = 0 \]

17350

\[ {} -2 x -y \cos \left (x y\right )+\left (2 y-x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

17351

\[ {} -4 x^{3}+6 y \sin \left (6 x y\right )+\left (4 y^{3}+6 x \sin \left (6 x y\right )\right ) y^{\prime } = 0 \]

17352

\[ {} t^{2} y+t^{3} y^{\prime } = 0 \]

17353

\[ {} y \left (2 \,{\mathrm e}^{t}+4 t \right )+3 \left ({\mathrm e}^{t}+t^{2}\right ) y^{\prime } = 0 \]

17354

\[ {} y+\left (2 t -y \,{\mathrm e}^{y}\right ) y^{\prime } = 0 \]

17355

\[ {} 2 t y+y^{2}-t^{2} y^{\prime } = 0 \]

17356

\[ {} y+2 t^{2}+\left (t^{2} y-t \right ) y^{\prime } = 0 \]

17357

\[ {} 5 t y+4 y^{2}+1+\left (t^{2}+2 t y\right ) y^{\prime } = 0 \]

17358

\[ {} 5 t y^{2}+y+\left (2 t^{3}-t \right ) y^{\prime } = 0 \]

17359

\[ {} 2 t +\tan \left (y\right )+\left (t -t^{2} \tan \left (y\right )\right ) y^{\prime } = 0 \]

17360

\[ {} 2 t -y^{2} \sin \left (t y\right )+\left (\cos \left (t y\right )-t y \sin \left (t y\right )\right ) y^{\prime } = 0 \]

17361

\[ {} -1+{\mathrm e}^{t y} y+y \cos \left (t y\right )+\left (1+{\mathrm e}^{t y} t +t \cos \left (t y\right )\right ) y^{\prime } = 0 \]

17362

\[ {} 2 t +2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

17363

\[ {} \frac {9 t}{5}+2 y+\left (2 t +2 y\right ) y^{\prime } = 0 \]

17364

\[ {} 2 t +\frac {19 y}{10}+\left (\frac {19 t}{10}+2 y\right ) y^{\prime } = 0 \]

17365

\[ {} -\frac {y}{2}+y^{\prime } = \frac {t}{y} \]

17366

\[ {} y+y^{\prime } = t y^{2} \]

17367

\[ {} 2 t y^{\prime }-y = 2 t y^{3} \cos \left (t \right ) \]

17368

\[ {} t y^{\prime }-y = t y^{3} \sin \left (t \right ) \]

17369

\[ {} -2 y+y^{\prime } = \frac {\cos \left (t \right )}{\sqrt {y}} \]

17370

\[ {} 3 y+y^{\prime } = \sqrt {y}\, \sin \left (t \right ) \]

17371

\[ {} y^{\prime }-\frac {y}{t} = t y^{2} \]

17372

\[ {} y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t^{2}} \]

17373

\[ {} y^{\prime }-\frac {y}{t} = \frac {y^{2}}{t} \]

17374

\[ {} y^{\prime }-\frac {y}{t} = t^{2} y^{{3}/{2}} \]

17375

\[ {} \cos \left (\frac {t}{y+t}\right )+{\mathrm e}^{\frac {2 y}{t}} y^{\prime } = 0 \]

17376

\[ {} y \ln \left (\frac {t}{y}\right )+\frac {t^{2} y^{\prime }}{y+t} = 0 \]

17377

\[ {} 2 \ln \left (t \right )-\ln \left (4 y^{2}\right ) y^{\prime } = 0 \]

17378

\[ {} \frac {2}{t}+\frac {1}{y}+\frac {t y^{\prime }}{y^{2}} = 0 \]

17379

\[ {} \frac {\sin \left (2 t \right )}{\cos \left (2 y\right )}+\frac {\ln \left (y\right ) y^{\prime }}{\ln \left (t \right )} = 0 \]

17380

\[ {} \sqrt {t^{2}+1}+y y^{\prime } = 0 \]

17381

\[ {} 2 t +\left (y-3 t \right ) y^{\prime } = 0 \]

17382

\[ {} 2 y-3 t +t y^{\prime } = 0 \]

17383

\[ {} t y-y^{2}+t \left (t -3 y\right ) y^{\prime } = 0 \]

17384

\[ {} t^{2}+t y+y^{2}-t y y^{\prime } = 0 \]

17385

\[ {} t^{3}+y^{3}-t y^{2} y^{\prime } = 0 \]

17386

\[ {} y^{\prime } = \frac {t +4 y}{4 t +y} \]

17387

\[ {} t y^{\prime }-y+t = 0 \]