| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y^{\prime } = x \left (y-1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \cos \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y-x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}+2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1+y}{x -1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x +y}{x -y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1-x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y+x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = -\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2}-y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x +y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x +y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-2 x^{2}-3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = 2 x -y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } x +1+y^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+y^{2} = x y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime } \sqrt {x^{2}+1}+x \sqrt {1+y^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \sqrt {1-y^{2}}+y \sqrt {-x^{2}+1}\, y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{-y} y^{\prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \ln \left (y\right )+x y^{\prime } = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a^{x +y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y} \left (x^{2}+1\right ) y^{\prime }-2 x \left (1+{\mathrm e}^{y}\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \sqrt {1-y^{2}} = \left (x^{2}+1\right ) y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{x} \sin \left (y\right )^{3}+\left ({\mathrm e}^{2 x}+1\right ) \cos \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{2}+\cos \left (x \right )^{2} \ln \left (y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = a x +b y+c
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x +y\right )^{2} y^{\prime } = a^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = a \left (x y+1\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a^{2}+y^{2}+2 x \sqrt {a x -x^{2}}\, y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {y}{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \cos \left (y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y^{\prime }} = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \ln \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y^{\prime }\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} {\mathrm e}^{y^{\prime }} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \tan \left (y^{\prime }\right ) = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \cos \left (y\right ) y^{\prime }+1 = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+\cos \left (2 y\right ) = 1
\]
|
✗ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime }-\sin \left (y\right ) = 1
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }-\frac {\cos \left (2 y\right )^{2}}{2} = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{y} = {\mathrm e}^{4 y} y^{\prime }+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (1+x \right ) = y-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 x \left (\pi +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+\sin \left (2 y\right ) = 1
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y+x \cos \left (\frac {y}{x}\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x -y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y \left (\ln \left (y\right )-\ln \left (x \right )\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime } = x^{2}-x y+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime } = y+\sqrt {-x^{2}+y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x^{2} y^{\prime } = x^{2}+y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x -3 y+\left (2 y-3 x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x +\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-2+\left (1-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-2+\left (x -y+4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (x -y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +3 y-5+\left (3 x +2 y-5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 8 x +4 y+1+\left (4 x +2 y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x -2 y-1+\left (3 x -6 y+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y+\left (x +y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x \left (x -y^{2}\right ) y^{\prime }+y^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y^{6}+x^{3} = 6 x y^{5} y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \left (1+\sqrt {x^{2} y^{4}+1}\right )+2 x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y^{3}+3 \left (y^{3}-x \right ) y^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = {\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-x y^{\prime } = y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = 2 x \,{\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = {\mathrm e}^{-x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -2 y+x y^{\prime } = x^{3} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \tan \left (x \right ) = \frac {1}{\cos \left (x \right )^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \ln \left (x \right ) y^{\prime }-y = 3 x^{3} \ln \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -y^{2}\right ) y^{\prime } = 2 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \cos \left (x \right ) = \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{2 y \ln \left (y\right )+y-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (\frac {{\mathrm e}^{-y^{2}}}{2}-x y\right ) y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \,{\mathrm e}^{x} = 2 x \,{\mathrm e}^{{\mathrm e}^{x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y x \,{\mathrm e}^{x} = {\mathrm e}^{\left (1-x \right ) {\mathrm e}^{x}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \ln \left (2\right ) = 2^{\sin \left (x \right )} \left (-1+\cos \left (x \right )\right ) \ln \left (2\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = -2 \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )-y \cos \left (x \right ) = -\frac {\sin \left (x \right )^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime } \cos \left (\frac {1}{x}\right )-y \sin \left (\frac {1}{x}\right ) = -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime }-y = 1-\frac {2}{\sqrt {x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime }+y = \left (x^{2}+1\right ) {\mathrm e}^{x}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+y = 2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }-\sin \left (x \right ) y = -\sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 x y = 2 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{2} y^{\prime }-2 y^{3} = x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+{\mathrm e}^{y}\right ) y^{\prime } = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|