4.6.1 Problems 1 to 100

Table 4.725: Second order non-linear ODE

#

ODE

Mathematica

Maple

Sympy

148

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

151

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \]

153

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

154

\[ {} y^{\prime \prime } = \left (x +y^{\prime }\right )^{2} \]

155

\[ {} y^{\prime \prime } = 2 {y^{\prime }}^{3} y \]

156

\[ {} y^{3} y^{\prime \prime } = 1 \]

157

\[ {} y^{\prime \prime } = 2 y y^{\prime } \]

158

\[ {} y y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

170

\[ {} r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}} \]

232

\[ {} y y^{\prime \prime } = 6 x^{4} \]

233

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

1360

\[ {} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right ) \]

2820

\[ {} z^{\prime \prime }+z^{3} = 0 \]

2821

\[ {} z^{\prime \prime }+z+z^{5} = 0 \]

2822

\[ {} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1 \]

2823

\[ {} z^{\prime \prime }+\frac {z}{1+z^{2}} = 0 \]

2824

\[ {} z^{\prime \prime }+z-2 z^{3} = 0 \]

3247

\[ {} y^{3} y^{\prime \prime }+4 = 0 \]

3248

\[ {} x^{\prime \prime } = \frac {k^{2}}{x^{2}} \]

3252

\[ {} y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime } \]

3256

\[ {} y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

3258

\[ {} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}} \]

3259

\[ {} y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime } \]

3260

\[ {} y^{\prime \prime } = y y^{\prime } \]

3261

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3262

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

3263

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 0 \]

3264

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 0 \]

3265

\[ {} y y^{\prime \prime }+1 = {y^{\prime }}^{2} \]

3267

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime } \]

3268

\[ {} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0 \]

3269

\[ {} y^{\prime \prime }+2 {y^{\prime }}^{2} = 2 \]

3270

\[ {} y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3} \]

3271

\[ {} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2} \]

3273

\[ {} 2 y^{\prime \prime } = {\mathrm e}^{y} \]

3274

\[ {} y^{\prime \prime } = y^{3} \]

3275

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right ) \]

3276

\[ {} y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2} \]

3277

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0 \]

3278

\[ {} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2} \]

3279

\[ {} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime } \]

3280

\[ {} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right ) \]

3281

\[ {} 2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2} \]

3283

\[ {} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2} \]

3483

\[ {} y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0 \]

3492

\[ {} \frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2} \]

4407

\[ {} y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2} \]

4432

\[ {} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0 \]

4436

\[ {} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0 \]

6305

\[ {} y^{\prime \prime } = 6 y^{2} \]

6306

\[ {} y^{\prime \prime } = x +6 y^{2} \]

6307

\[ {} y^{\prime \prime } = a +b x +c y^{2} \]

6308

\[ {} y^{\prime \prime } = 2 y^{3} \]

6309

\[ {} y^{\prime \prime } = a +b y+2 y^{3} \]

6310

\[ {} y^{\prime \prime } = a +x y+2 y^{3} \]

6311

\[ {} y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y+2 y^{3} \]

6312

\[ {} y^{\prime \prime } = a -2 a b x y+2 y^{3} b^{2} \]

6313

\[ {} y^{\prime \prime } = \operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3} \]

6314

\[ {} y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3} \]

6315

\[ {} a \,x^{r} y^{s}+y^{\prime \prime } = 0 \]

6316

\[ {} a \sin \left (y\right )+y^{\prime \prime } = 0 \]

6317

\[ {} a \,{\mathrm e}^{y}+y^{\prime \prime } = 0 \]

6318

\[ {} y^{\prime \prime } = f \left (y\right ) \]

6319

\[ {} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3} \]

6320

\[ {} y y^{\prime }+y^{\prime \prime } = 0 \]

6321

\[ {} y y^{\prime }+y^{\prime \prime } = y^{3} \]

6322

\[ {} a y+y y^{\prime }+y^{\prime \prime } = y^{3} \]

6323

\[ {} y y^{\prime }+y^{\prime \prime } = -12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right ) \]

6324

\[ {} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime } = y^{3} \]

6325

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime } \]

6326

\[ {} y^{\prime \prime } = \operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime } \]

6327

\[ {} y^{\prime \prime } = \operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime } \]

6328

\[ {} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6329

\[ {} y^{\prime \prime } = g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime } \]

6330

\[ {} y^{\prime \prime } = \operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6331

\[ {} y^{\prime \prime } = \operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime } \]

6332

\[ {} y^{\prime \prime } = a +4 y b^{2}+3 b y^{2}+3 y y^{\prime } \]

6333

\[ {} 3 y y^{\prime }+y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y-y^{3} \]

6334

\[ {} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime } \]

6335

\[ {} y^{\prime \prime } = a \left (1+2 y y^{\prime }\right ) \]

6336

\[ {} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6337

\[ {} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0 \]

6338

\[ {} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2} \]

6339

\[ {} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6340

\[ {} y^{\prime \prime } = a {y^{\prime }}^{2} \]

6341

\[ {} y^{\prime \prime } = a^{2}+b^{2} {y^{\prime }}^{2} \]

6342

\[ {} b y+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6343

\[ {} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6344

\[ {} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6345

\[ {} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2} \]

6346

\[ {} f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6347

\[ {} b y+a y {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6348

\[ {} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6349

\[ {} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6350

\[ {} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6351

\[ {} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0 \]

6352

\[ {} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6353

\[ {} y^{\prime \prime } = \left (a -x \right ) {y^{\prime }}^{3} \]

6354

\[ {} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]

6355

\[ {} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime } = 0 \]