| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \left (x +y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 {y^{\prime }}^{3} y
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} y^{\prime \prime } = 1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 2 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} r y^{\prime \prime } = \left (1+{y^{\prime }}^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 6 x^{4}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} u^{\prime \prime }+u^{\prime }+\frac {u^{3}}{5} = \cos \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} z^{\prime \prime }+z^{3} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+z+z^{5} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} z^{\prime \prime }+{\mathrm e}^{z^{2}} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} z^{\prime \prime }+\frac {z}{1+z^{2}} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+z-2 z^{3} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3} y^{\prime \prime }+4 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{\prime \prime } = \frac {k^{2}}{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{3}+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \sqrt {1+{y^{\prime }}^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2}+y^{\prime }
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 {y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+1 = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y y^{\prime \prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+2 {y^{\prime }}^{2} = 2
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+y\right ) y^{\prime \prime } = 3 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime \prime } = {\mathrm e}^{y}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \cos \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime \prime }-y^{2} y^{\prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+1+{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = y^{3}+{y^{\prime }}^{2}
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \left (1+{y^{\prime }}^{2}\right )^{2} = y^{2} y^{\prime \prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = {y^{\prime }}^{2} \sin \left (x \right )
\]
|
✓ |
✗ |
✗ |
|
| \[
{} 2 y y^{\prime \prime } = y^{3}+2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime } = 2 {y^{\prime }}^{2}+y^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+{y^{\prime }}^{2}+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime \prime }}{y}-\frac {{y^{\prime }}^{2}}{y^{2}}+\frac {2 a \coth \left (2 a x \right ) y^{\prime }}{y} = 2 a^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-y y^{\prime } = {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime \prime }-y^{2} y^{\prime }-{y^{\prime }}^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1+y^{2}\right ) y^{\prime \prime }+{y^{\prime }}^{3}+y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = 6 y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = x +6 y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a +b x +c y^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = a +b y+2 y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = a +x y+2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y+2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a -2 a b x y+2 y^{3} b^{2}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {a0} +\operatorname {a2} y+\operatorname {a1} x y+\operatorname {a3} y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {a0} +\operatorname {a1} y+\operatorname {a2} y^{2}+\operatorname {a3} y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,x^{r} y^{s}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} a \sin \left (y\right )+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a \,{\mathrm e}^{y}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = f \left (y\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \left (2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+3 f \left (x \right ) y^{\prime }+y^{\prime \prime } = 2 y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} a y+y y^{\prime }+y^{\prime \prime } = y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y y^{\prime }+y^{\prime \prime } = -12 f \left (x \right ) y+y^{3}+12 f^{\prime }\left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 2 a^{2} y+a y^{2}+\left (3 a +y\right ) y^{\prime }+y^{\prime \prime } = y^{3}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}+y^{3}+y \left (-2 f \left (x \right )^{2}+f^{\prime }\left (x \right )\right )+\left (3 f \left (x \right )-y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f2} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f1} \left (x \right ) y^{2}+y^{3}+\left (3 \operatorname {f1} \left (x \right )-y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {g3} \left (x \right )+\operatorname {g2} \left (x \right ) y+\operatorname {g1} \left (x \right ) y^{2}+\operatorname {g0} \left (x \right ) y^{3}+\left (\operatorname {f1} \left (x \right )+\operatorname {f0} \left (x \right ) y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f^{\prime }\left (x \right ) y+\left (f \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = g \left (x \right )+f \left (x \right ) y^{2}+\left (f \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f3} \left (x \right )+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = \operatorname {f4} \left (x \right )+\operatorname {f3} \left (x \right ) y+\operatorname {f2} \left (x \right ) y^{2}+\left (\operatorname {f1} \left (x \right )-2 y\right ) y^{\prime }
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = a +4 y b^{2}+3 b y^{2}+3 y y^{\prime }
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 y y^{\prime }+y^{\prime \prime } = f \left (x \right )+g \left (x \right ) y-y^{3}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = f \left (x \right ) y^{2}-y^{3}+\left (f \left (x \right )-3 y\right ) y^{\prime }
\]
|
✗ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = a \left (1+2 y y^{\prime }\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b y+a \left (y^{2}-1\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} g \left (x , y\right )+f \left (x , y\right ) y^{\prime }+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = 2 x +\left (x^{2}-y^{\prime }\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \cot \left (x \right ) y^{\prime }+2 \tan \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime } = a {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = a^{2}+b^{2} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} b y+a {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} b \sin \left (y\right )+a {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} c y+b y^{\prime }+a {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime } = {\mathrm e}^{x} {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} f \left (x \right ) y^{\prime }+g \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} b y+a y {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} g \left (y\right )+f \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (x \right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} h \left (y\right )+f \left (y\right ) y^{\prime }+g \left (y\right ) {y^{\prime }}^{2}+y^{\prime \prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime }+{y^{\prime }}^{3}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \left (a -x \right ) {y^{\prime }}^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left ({\mathrm e}^{2 y}+x \right ) {y^{\prime }}^{3}+y^{\prime \prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} 2 y^{\prime }+4 {y^{\prime }}^{3}+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|