4.21.4 Problems 301 to 400

Table 4.1317: Higher order, Linear, Homogeneous and constant coefficients

#

ODE

Mathematica

Maple

Sympy

8926

\[ {} y^{\prime \prime \prime }-8 y = 0 \]

8927

\[ {} y^{\prime \prime \prime \prime }+16 y = 0 \]

8928

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

8929

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

8930

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

8931

\[ {} y^{\prime \prime \prime \prime }-16 y = 0 \]

8932

\[ {} y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

8933

\[ {} y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

8934

\[ {} -4 y^{\prime }+y^{\prime \prime \prime } = 0 \]

8935

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

8938

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

8939

\[ {} y^{\left (5\right )}+2 y = 0 \]

8940

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

8941

\[ {} y^{\prime \prime \prime }+y = 0 \]

8942

\[ {} y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

8944

\[ {} y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

9092

\[ {} 2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

9302

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

9303

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

9304

\[ {} y^{\prime \prime \prime }-y = 0 \]

9305

\[ {} y^{\prime \prime \prime }+y = 0 \]

9306

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

9307

\[ {} y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

9308

\[ {} y^{\prime \prime \prime \prime }-y = 0 \]

9309

\[ {} y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

9310

\[ {} y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

9311

\[ {} a^{4} y+2 a^{2} y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

9312

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]

9313

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime \prime }-6 y^{\prime }+5 y = 0 \]

9314

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

9315

\[ {} y^{\prime \prime \prime \prime }+y^{\prime \prime \prime }-3 y^{\prime \prime }-5 y^{\prime }-2 y = 0 \]

9316

\[ {} y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }-8 y^{\prime \prime \prime }+48 y^{\prime \prime }+16 y^{\prime }-96 y = 0 \]

9317

\[ {} y^{\prime \prime \prime \prime } = 0 \]

12723

\[ {} y^{\prime \prime \prime }-\lambda y = 0 \]

12726

\[ {} y^{\prime \prime \prime }+3 y^{\prime }-4 y = 0 \]

12733

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime }+10 y = 0 \]

12736

\[ {} y^{\prime \prime \prime }+\operatorname {a2} y^{\prime \prime }+\operatorname {a1} y^{\prime }+\operatorname {a0} y = 0 \]

12797

\[ {} y^{\prime \prime \prime \prime } = 0 \]

12799

\[ {} y^{\prime \prime \prime \prime }+\lambda y = 0 \]

12802

\[ {} y^{\prime \prime \prime \prime }+\left (\lambda +1\right ) a^{2} y^{\prime \prime }+\lambda \,a^{4} y = 0 \]

12835

\[ {} f \left (y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y\right )+2 \operatorname {df} \left (y^{\prime \prime \prime }-a^{2} y^{\prime }\right ) = 0 \]

12836

\[ {} f y^{\prime \prime \prime \prime } = 0 \]

12844

\[ {} x \left (a y^{\prime }+b y^{\prime \prime }+c y^{\prime \prime \prime }+e y^{\prime \prime \prime \prime }\right ) y = 0 \]

13070

\[ {} 2 y^{\prime } y^{\prime \prime \prime }-3 {y^{\prime }}^{2} = 0 \]

14202

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

14203

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

14204

\[ {} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

14205

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

14206

\[ {} -y-2 y^{\prime }+2 y^{\prime \prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

14207

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

14208

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

14209

\[ {} y^{\prime }-y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

14458

\[ {} x^{\prime \prime \prime }+x^{\prime } = 0 \]

14460

\[ {} x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

14461

\[ {} x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

14463

\[ {} x^{\prime \prime \prime }-8 x = 0 \]

14464

\[ {} x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

14536

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-4 y^{\prime }+8 y = 0 \]

14537

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-4 y^{\prime }+12 y = 0 \]

14678

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

14692

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = 0 \]

14693

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+5 y^{\prime }+12 y = 0 \]

14700

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+7 y^{\prime }-3 y = 0 \]

14701

\[ {} 4 y^{\prime \prime \prime }+4 y^{\prime \prime }-7 y^{\prime }+2 y = 0 \]

14702

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

14703

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+5 y^{\prime }+6 y = 0 \]

14704

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = 0 \]

14705

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime }+16 y = 0 \]

14706

\[ {} y^{\left (5\right )}-2 y^{\prime \prime \prime \prime }+y^{\prime \prime \prime } = 0 \]

14707

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+y^{\prime }+2 y = 0 \]

14708

\[ {} y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }-2 y^{\prime \prime }+2 y^{\prime }+12 y = 0 \]

14709

\[ {} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime }+15 y^{\prime \prime }+20 y^{\prime }+12 y = 0 \]

14710

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

14711

\[ {} y^{\left (5\right )} = 0 \]

14726

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

14727

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+4 y^{\prime }-8 y = 0 \]

14728

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y = 0 \]

14729

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+9 y^{\prime }-5 y = 0 \]

14730

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+6 y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

14731

\[ {} y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime }+y^{\prime \prime }+13 y^{\prime }+30 y = 0 \]

15183

\[ {} y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

15262

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+y^{\prime }-y = 0 \]

15264

\[ {} 3 y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y^{\prime } = 0 \]

15311

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

15319

\[ {} y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime } = 0 \]

15320

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+13 y^{\prime } = 0 \]

15321

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+13 y^{\prime } = 0 \]

15322

\[ {} y^{\prime \prime \prime }+4 y^{\prime \prime }+29 y^{\prime } = 0 \]

15323

\[ {} y^{\prime \prime \prime }+6 y^{\prime \prime }+25 y^{\prime } = 0 \]

15324

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+10 y^{\prime } = 0 \]

15325

\[ {} y^{\prime \prime \prime \prime }+13 y^{\prime \prime }+36 y = 0 \]

15512

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15533

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

15534

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15535

\[ {} -a^{3} y+3 a^{2} y^{\prime }-3 a y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

15536

\[ {} y^{\left (5\right )}-4 y^{\prime \prime \prime } = 0 \]

15537

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+9 y = 0 \]

15538

\[ {} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+16 y = 0 \]

15539

\[ {} y^{\prime \prime \prime \prime }+y = 0 \]

15540

\[ {} y^{\prime \prime \prime \prime }-a^{4} y = 0 \]