Chapter 1
Lookup tables for all problems in current book

1.1 Chapter 1. section 5. Problems at page 19
1.2 Chapter IV. Methods of solution: First order equations. section 24. Problems at page 62
1.3 Chapter IV. Methods of solution: First order equations. section 29. Problems at page 81
1.4 Chapter IV. Methods of solution: First order equations. section 31. Problems at page 85
1.5 Chapter IV. Methods of solution: First order equations. section 32. Problems at page 89
1.6 Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91
1.7 Chapter V. Singular solutions. section 36. Problems at page 99
1.8 Chapter VII. Linear equations of order higher than the first. section 56. Problems at page 163
1.9 Chapter VII. Linear equations of order higher than the first. section 63. Problems at page 196

1.1 Chapter 1. section 5. Problems at page 19

Table 1.1: Lookup table

ID

problem

ODE

18207

2

\(x^{2} y^{\prime \prime }-\frac {x^{2} {y^{\prime }}^{2}}{2 y}+4 x y^{\prime }+4 y = 0\)

18208

3

\(y^{\prime }+c y = a\)

18209

4

\(y^{\prime \prime }+\frac {y^{\prime }}{x}+k^{2} y = 0\)

18210

5

\(\cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y^{\prime \prime }+n y \sin \left (x \right ) = 0\)

18211

6

\(y^{\prime } = \frac {\sqrt {1-y^{2}}\, \arcsin \left (y\right )}{x}\)

18212

16 (a)

\(v^{\prime \prime } = \left (\frac {1}{v}+{v^{\prime }}^{4}\right )^{{1}/{3}}\)

18213

16 (b)

\(v^{\prime }+u^{2} v = \sin \left (u \right )\)

18214

17 (a)

\(\sqrt {y^{\prime }+y} = \left (y^{\prime \prime }+2 x \right )^{{1}/{4}}\)

18215

18

\(v^{\prime }+\frac {2 v}{u} = 3\)

1.2 Chapter IV. Methods of solution: First order equations. section 24. Problems at page 62

Table 1.3: Lookup table

ID

problem

ODE

18216

4 (a)

\(\sin \left (x \right ) \cos \left (y\right )^{2}+\cos \left (x \right )^{2} y^{\prime } = 0\)

18217

4 (b)

\(y^{\prime }+\sqrt {\frac {1-y^{2}}{-x^{2}+1}} = 0\)

18218

4 (c)

\(y-x y^{\prime } = b \left (1+x^{2} y^{\prime }\right )\)

18219

5

\(x^{\prime } = k \left (A -n x\right ) \left (M -m x\right )\)

18220

6

\(y^{\prime } = 1+\frac {1}{x}-\frac {1}{y^{2}+2}-\frac {1}{x \left (y^{2}+2\right )}\)

1.3 Chapter IV. Methods of solution: First order equations. section 29. Problems at page 81

Table 1.5: Lookup table

ID

problem

ODE

18221

1

\(y^{2} = x \left (y-x \right ) y^{\prime }\)

18222

2

\(2 x^{2} y+y^{3}-x^{3} y^{\prime } = 0\)

18223

3

\(2 a x +b y+\left (2 c y+b x +e \right ) y^{\prime } = g\)

18224

4

\(\sec \left (x \right )^{2} \tan \left (y\right ) y^{\prime }+\sec \left (y\right )^{2} \tan \left (x \right ) = 0\)

18225

5

\(x +y y^{\prime } = m y\)

18226

6

\(\frac {2 x}{y^{3}}+\left (\frac {1}{y^{2}}-\frac {3 x^{2}}{y^{4}}\right ) y^{\prime } = 0\)

18227

8

\(\left (T+\frac {1}{\sqrt {t^{2}-T^{2}}}\right ) T^{\prime } = \frac {T}{t \sqrt {t^{2}-T^{2}}}-t\)

1.4 Chapter IV. Methods of solution: First order equations. section 31. Problems at page 85

Table 1.7: Lookup table

ID

problem

ODE

18228

1

\(y^{\prime }+y x = x\)

18229

2

\(y^{\prime }+\frac {y}{x} = \sin \left (x \right )\)

18230

3

\(y^{\prime }+\frac {y}{x} = \frac {\sin \left (x \right )}{y^{3}}\)

18231

4

\(p^{\prime } = \frac {p+a \,t^{3}-2 p t^{2}}{t \left (-t^{2}+1\right )}\)

18232

5

\(\left (T \ln \left (t \right )-1\right ) T = t T^{\prime }\)

18233

6

\(y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2}\)

18234

7

\(y-\cos \left (x \right ) y^{\prime } = y^{2} \cos \left (x \right ) \left (1-\sin \left (x \right )\right )\)

1.5 Chapter IV. Methods of solution: First order equations. section 32. Problems at page 89

Table 1.9: Lookup table

ID

problem

ODE

18235

2

\(x {y^{\prime }}^{2}-y+2 y^{\prime } = 0\)

18236

3

\(2 {y^{\prime }}^{3}+{y^{\prime }}^{2}-y = 0\)

18237

4

\(y^{\prime } = {\mathrm e}^{z -y^{\prime }}\)

18238

5

\(\sqrt {t^{2}+T} = T^{\prime }\)

18239

7

\(\left (x^{2}-1\right ) {y^{\prime }}^{2} = 1\)

18240

8

\(y^{\prime } = \left (x +y\right )^{2}\)

1.6 Chapter IV. Methods of solution: First order equations. section 33. Problems at page 91

Table 1.11: Lookup table

ID

problem

ODE

18241

1

\(\theta ^{\prime \prime } = -p^{2} \theta \)

18242

2 (eq 39)

\(\sec \left (\theta \right )^{2} = \frac {m s^{\prime }}{k}\)

18243

3 (eq 41)

\(y^{\prime \prime } = \frac {m \sqrt {1+{y^{\prime }}^{2}}}{k}\)

18244

4 (eq 50)

\(\phi ^{\prime \prime } = \frac {4 \pi n c}{\sqrt {v_{0}^{2}+\frac {2 e \left (\phi -V_{0} \right )}{m}}}\)

18245

8 (eq 68)

\(y^{\prime } = x \left (a y^{2}+b \right )\)

18246

8 (eq 69)

\(n^{\prime } = \left (n^{2}+1\right ) x\)

18247

9 (a)

\(v^{\prime }+\frac {2 v}{u} = 3 v\)

18248

9 (b)

\(\sqrt {-u^{2}+1}\, v^{\prime } = 2 u \sqrt {1-v^{2}}\)

18249

9 (c)

\(\sqrt {1+v^{\prime }} = \frac {{\mathrm e}^{u}}{2}\)

18250

9 (d)

\(\frac {y^{\prime }}{x} = y \sin \left (x^{2}-1\right )-\frac {2 y}{\sqrt {x}}\)

18251

9 (e)

\(y^{\prime } = 1+\frac {2 y}{x -y}\)

18252

10 (a)

\(v^{\prime }+2 v u = 2 u\)

18253

10 (b)

\(1+v^{2}+\left (u^{2}+1\right ) v v^{\prime } = 0\)

18254

10 (c)

\(u \ln \left (u \right ) v^{\prime }+\sin \left (v\right )^{2} = 1\)

1.7 Chapter V. Singular solutions. section 36. Problems at page 99

Table 1.13: Lookup table

ID

problem

ODE

18255

1 (eq 98)

\(4 y {y^{\prime }}^{3}-2 x^{2} {y^{\prime }}^{2}+4 x y y^{\prime }+x^{3} = 16 y^{2}\)

1.8 Chapter VII. Linear equations of order higher than the first. section 56. Problems at page 163

Table 1.15: Lookup table

ID

problem

ODE

18256

1 (eq 100)

\(\theta ^{\prime \prime }-p^{2} \theta = 0\)

18257

2

\(y^{\prime \prime }+y = 0\)

18258

3

\(y^{\prime \prime }+12 y = 7 y^{\prime }\)

18259

4

\(r^{\prime \prime }-a^{2} r = 0\)

18260

5

\(y^{\prime \prime \prime \prime }-a^{4} y = 0\)

18261

6

\(v^{\prime \prime }-6 v^{\prime }+13 v = {\mathrm e}^{-2 u}\)

18262

7

\(y^{\prime \prime }+4 y^{\prime }-y = \sin \left (t \right )\)

18263

8

\(y^{\prime \prime }+3 y = \sin \left (x \right )+\frac {\sin \left (3 x \right )}{3}\)

18264

10

\(5 x^{\prime }+x = \sin \left (3 t \right )\)

18265

11

\(x^{\prime \prime \prime \prime }-6 x^{\prime \prime \prime }+11 x^{\prime \prime }-6 x^{\prime } = {\mathrm e}^{-3 t}\)

18266

14

\(x^{4} y^{\prime \prime \prime \prime }+x^{3} y^{\prime \prime \prime }-20 x^{2} y^{\prime \prime }+20 x y^{\prime } = 17 x^{6}\)

18267

15

\(t^{4} x^{\prime \prime \prime \prime }-2 t^{3} x^{\prime \prime \prime }-20 t^{2} x^{\prime \prime }+12 t x^{\prime }+16 x = \cos \left (3 \ln \left (t \right )\right )\)

1.9 Chapter VII. Linear equations of order higher than the first. section 63. Problems at page 196

Table 1.17: Lookup table

ID

problem

ODE

18268

1

\(y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0\)

18269

2

\(y^{\prime \prime \prime \prime }-3 y^{\prime \prime \prime }+3 y^{\prime \prime }-y^{\prime } = {\mathrm e}^{2 x}\)

18270

3

\(y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime }-y = \cos \left (x \right )\)

18271

8

\(x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{x}\)