6.75 Problems 7401 to 7500

Table 6.149: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

7401

\[ {}y^{\prime } = \left (y-1\right ) \left (1+x \right ) \]

7402

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

7403

\[ {}y^{\prime } = \frac {\sqrt {y}}{\sqrt {x}} \]

7404

\[ {}y^{\prime } = \frac {\sqrt {y}}{x} \]

7405

\[ {}z^{\prime } = 10^{x +z} \]

7406

\[ {}x^{\prime }+t = 1 \]

7407

\[ {}y^{\prime } = \cos \left (x -y\right ) \]

7408

\[ {}y^{\prime }-y = 2 x -3 \]

7409

\[ {}\left (x +2 y\right ) y^{\prime } = 1 \]

7410

\[ {}y^{\prime }+y = 2 x +1 \]

7411

\[ {}y^{\prime } = \cos \left (-y+x -1\right ) \]

7412

\[ {}y^{\prime }+\sin \left (x +y\right )^{2} = 0 \]

7413

\[ {}y^{\prime } = 2 \sqrt {2 x +y+1} \]

7414

\[ {}y^{\prime } = \left (x +y+1\right )^{2} \]

7415

\[ {}y^{2}+x y^{2}+\left (x^{2}-x^{2} y\right ) y^{\prime } = 0 \]

7416

\[ {}\left (1+y^{2}\right ) \left ({\mathrm e}^{2 x}-{\mathrm e}^{y} y^{\prime }\right )-\left (1+y\right ) y^{\prime } = 0 \]

7417

\[ {}x -y+\left (x +y\right ) y^{\prime } = 0 \]

7418

\[ {}y-2 x y+x^{2} y^{\prime } = 0 \]

7419

\[ {}2 x y^{\prime } = y \left (2 x^{2}-y^{2}\right ) \]

7420

\[ {}y^{2}+x^{2} y^{\prime } = x y y^{\prime } \]

7421

\[ {}\left (x^{2}+y^{2}\right ) y^{\prime } = 2 x y \]

7422

\[ {}x y^{\prime }-y = x \tan \left (\frac {y}{x}\right ) \]

7423

\[ {}x y^{\prime } = y-x \,{\mathrm e}^{\frac {y}{x}} \]

7424

\[ {}x y^{\prime }-y = \left (x +y\right ) \ln \left (\frac {x +y}{x}\right ) \]

7425

\[ {}x y^{\prime } = y \cos \left (\frac {y}{x}\right ) \]

7426

\[ {}y+\sqrt {x y}-x y^{\prime } = 0 \]

7427

\[ {}x y^{\prime }-\sqrt {x^{2}-y^{2}}-y = 0 \]

7428

\[ {}x +y-\left (x -y\right ) y^{\prime } = 0 \]

7429

\[ {}x^{2}+2 x y-y^{2}+\left (y^{2}+2 x y-x^{2}\right ) y^{\prime } = 0 \]

7430

\[ {}x y^{\prime }-y = y y^{\prime } \]

7431

\[ {}y^{2}+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

7432

\[ {}y^{2}+x y+x^{2} = x^{2} y^{\prime } \]

7433

\[ {}\frac {1}{x^{2}-x y+y^{2}} = \frac {y^{\prime }}{2 y^{2}-x y} \]

7434

\[ {}y^{\prime } = \frac {2 x y}{3 x^{2}-y^{2}} \]

7435

\[ {}y^{\prime } = \frac {x}{y}+\frac {y}{x} \]

7436

\[ {}x y^{\prime } = y+\sqrt {y^{2}-x^{2}} \]

7437

\[ {}y+\left (2 \sqrt {x y}-x \right ) y^{\prime } = 0 \]

7438

\[ {}x y^{\prime } = y \ln \left (\frac {y}{x}\right ) \]

7439

\[ {}y^{\prime } \left (y^{\prime }+y\right ) = x \left (x +y\right ) \]

7440

\[ {}\left (x y^{\prime }+y\right )^{2} = y^{\prime } y^{2} \]

7441

\[ {}x^{2} {y^{\prime }}^{2}-3 x y y^{\prime }+2 y^{2} = 0 \]

7442

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

7443

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

7444

\[ {}y^{\prime }+\frac {x +2 y}{x} = 0 \]

7445

\[ {}y^{\prime } = \frac {y}{x +y} \]

7446

\[ {}x y^{\prime } = x +\frac {y}{2} \]

7447

\[ {}y^{\prime } = \frac {x +y-2}{y-x -4} \]

7448

\[ {}2 x -4 y+6+\left (x +y-2\right ) y^{\prime } = 0 \]

7449

\[ {}y^{\prime } = \frac {2 y-x +5}{2 x -y-4} \]

7450

\[ {}y^{\prime } = -\frac {4 x +3 y+15}{2 x +y+7} \]

7451

\[ {}y^{\prime } = \frac {x +3 y-5}{-y+x -1} \]

7452

\[ {}y^{\prime } = \frac {2 \left (y+2\right )^{2}}{\left (x +y+1\right )^{2}} \]

7453

\[ {}2 x +y+1-\left (4 x +2 y-3\right ) y^{\prime } = 0 \]

7454

\[ {}x -y-1+\left (y-x +2\right ) y^{\prime } = 0 \]

7455

\[ {}\left (x +4 y\right ) y^{\prime } = 2 x +3 y-5 \]

7456

\[ {}y+2 = \left (2 x +y-4\right ) y^{\prime } \]

7457

\[ {}\left (1+y^{\prime }\right ) \ln \left (\frac {x +y}{x +3}\right ) = \frac {x +y}{x +3} \]

7458

\[ {}y^{\prime } = \frac {x -2 y+5}{y-2 x -4} \]

7459

\[ {}y^{\prime } = \frac {3 x -y+1}{2 x +y+4} \]

7460

\[ {}2 x y^{\prime }+\left (x^{2} y^{4}+1\right ) y = 0 \]

7461

\[ {}2 x y^{\prime } \left (x -y^{2}\right )+y^{3} = 0 \]

7462

\[ {}x^{3} \left (y^{\prime }-x \right ) = y^{2} \]

7463

\[ {}2 x^{2} y^{\prime } = y^{3}+x y \]

7464

\[ {}y+x \left (1+2 x y\right ) y^{\prime } = 0 \]

7465

\[ {}2 y^{\prime }+x = 4 \sqrt {y} \]

7466

\[ {}y^{\prime } = y^{2}-\frac {2}{x^{2}} \]

7467

\[ {}2 x y^{\prime }+y = y^{2} \sqrt {x -x^{2} y^{2}} \]

7468

\[ {}\frac {2 x y y^{\prime }}{3} = \sqrt {x^{6}-y^{4}}+y^{2} \]

7469

\[ {}2 y+\left (1+x^{2} y\right ) x y^{\prime } = 0 \]

7470

\[ {}y \left (x y+1\right )+x \left (1-x y\right ) y^{\prime } = 0 \]

7471

\[ {}y \left (x^{2} y^{2}+1\right )+\left (x^{2} y^{2}-1\right ) x y^{\prime } = 0 \]

7472

\[ {}\left (x^{2}-y^{4}\right ) y^{\prime }-x y = 0 \]

7473

\[ {}y \left (1+\sqrt {x^{2} y^{4}-1}\right )+2 x y^{\prime } = 0 \]

7474

\[ {}x \left (2-9 x y^{2}\right )+y \left (4 y^{2}-6 x^{3}\right ) y^{\prime } = 0 \]

7475

\[ {}\frac {y}{x}+\left (y^{3}+\ln \left (x \right )\right ) y^{\prime } = 0 \]

7476

\[ {}2 x +3+\left (2 y-2\right ) y^{\prime } = 0 \]

7477

\[ {}2 x +4 y+\left (2 x -2 y\right ) y^{\prime } = 0 \]

7478

\[ {}y^{\prime \prime }+2 y^{\prime }-y = 0 \]

7479

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

7480

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7481

\[ {}y^{\prime \prime }-\cot \left (x \right ) y^{\prime }+y \cos \left (x \right ) = 0 \]

7482

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+x^{2} y = 0 \]

7483

\[ {}x^{2} \left (-x^{2}+1\right ) y^{\prime \prime }+2 x \left (-x^{2}+1\right ) y^{\prime }-2 y = 0 \]

7484

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7485

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

7486

\[ {}y^{\prime \prime }+x \left (1-x \right ) y^{\prime }+y \,{\mathrm e}^{x} = 0 \]

7487

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }+4 y = 0 \]

7488

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

7489

\[ {}\left (x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+y = 0 \]

7490

\[ {}y^{\prime \prime }+x y^{\prime }+y = 2 x \,{\mathrm e}^{x}-1 \]

7491

\[ {}x y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7492

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = x^{2}+2 x \]

7493

\[ {}x^{3} y^{\prime \prime }+x y^{\prime }-y = \cos \left (\frac {1}{x}\right ) \]

7494

\[ {}x \left (1+x \right ) y^{\prime \prime }+\left (x +2\right ) y^{\prime }-y = x +\frac {1}{x} \]

7495

\[ {}2 x y^{\prime \prime }+\left (x -2\right ) y^{\prime }-y = x^{2}-1 \]

7496

\[ {}x^{2} \left (1+x \right ) y^{\prime \prime }+x \left (4 x +3\right ) y^{\prime }-y = x +\frac {1}{x} \]

7497

\[ {}x^{2} \left (-1+\ln \left (x \right )\right ) y^{\prime \prime }-x y^{\prime }+y = x \left (1-\ln \left (x \right )\right )^{2} \]

7498

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = \sec \left (x \right ) \]

7499

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\frac {y}{4} = -\frac {x^{2}}{2}+\frac {1}{2} \]

7500

\[ {}\left (\cos \left (x \right )+\sin \left (x \right )\right ) y^{\prime \prime }-2 \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )-\sin \left (x \right )\right ) y = \left (\cos \left (x \right )+\sin \left (x \right )\right )^{2} {\mathrm e}^{2 x} \]