6.132 Problems 13101 to 13200

Table 6.263: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

13101

\[ {}x^{\prime } = x \left (1+x \,{\mathrm e}^{t}\right ) \]

13102

\[ {}x^{\prime } = -\frac {x}{t}+\frac {1}{t x^{2}} \]

13103

\[ {}t^{2} y^{\prime }+2 t y-y^{2} = 0 \]

13104

\[ {}x^{\prime } = a x+b x^{3} \]

13105

\[ {}w^{\prime } = t w+t^{3} w^{3} \]

13106

\[ {}x^{3}+3 t x^{2} x^{\prime } = 0 \]

13107

\[ {}t^{3}+\frac {x}{t}+\left (x^{2}+\ln \left (t \right )\right ) x^{\prime } = 0 \]

13108

\[ {}x^{\prime } = -\frac {\sin \left (x\right )-x \sin \left (t \right )}{t \cos \left (x\right )+\cos \left (t \right )} \]

13109

\[ {}x+3 t x^{2} x^{\prime } = 0 \]

13110

\[ {}x^{2}-t^{2} x^{\prime } = 0 \]

13111

\[ {}t \cot \left (x\right ) x^{\prime } = -2 \]

13112

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13113

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13114

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13115

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13116

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = 0 \]

13117

\[ {}x^{\prime \prime }-2 x^{\prime } = 0 \]

13118

\[ {}\frac {x^{\prime \prime }}{2}+x^{\prime }+\frac {x}{2} = 0 \]

13119

\[ {}x^{\prime \prime }+4 x^{\prime }+3 x = 0 \]

13120

\[ {}x^{\prime \prime }+x^{\prime }+4 x = 0 \]

13121

\[ {}x^{\prime \prime }-4 x^{\prime }+6 x = 0 \]

13122

\[ {}x^{\prime \prime }+9 x = 0 \]

13123

\[ {}x^{\prime \prime }-12 x = 0 \]

13124

\[ {}2 x^{\prime \prime }+3 x^{\prime }+3 x = 0 \]

13125

\[ {}\frac {x^{\prime \prime }}{2}+\frac {5 x^{\prime }}{6}+\frac {2 x}{9} = 0 \]

13126

\[ {}x^{\prime \prime }+x^{\prime }+x = 0 \]

13127

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{8}+x = 0 \]

13128

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 t^{3}-1 \]

13129

\[ {}x^{\prime \prime }+x^{\prime }+x = 3 \cos \left (t \right )-2 \sin \left (t \right ) \]

13130

\[ {}x^{\prime \prime }+x^{\prime }+x = 12 \]

13131

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{2} {\mathrm e}^{3 t} \]

13132

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (7 t \right ) \]

13133

\[ {}x^{\prime \prime }+x^{\prime }+x = {\mathrm e}^{2 t} \cos \left (t \right )+t^{2} \]

13134

\[ {}x^{\prime \prime }+x^{\prime }+x = t \,{\mathrm e}^{-t} \sin \left (\pi t \right ) \]

13135

\[ {}x^{\prime \prime }+x^{\prime }+x = \left (2+t \right ) \sin \left (\pi t \right ) \]

13136

\[ {}x^{\prime \prime }+x^{\prime }+x = 4 t +5 \,{\mathrm e}^{-t} \]

13137

\[ {}x^{\prime \prime }+x^{\prime }+x = 5 \sin \left (2 t \right )+t \,{\mathrm e}^{t} \]

13138

\[ {}x^{\prime \prime }+x^{\prime }+x = t^{3}+1-4 \cos \left (t \right ) t \]

13139

\[ {}x^{\prime \prime }+x^{\prime }+x = -6+2 \,{\mathrm e}^{2 t} \sin \left (t \right ) \]

13140

\[ {}x^{\prime \prime }+7 x = t \,{\mathrm e}^{3 t} \]

13141

\[ {}x^{\prime \prime }-x^{\prime } = 6+{\mathrm e}^{2 t} \]

13142

\[ {}x^{\prime \prime }+x = t^{2} \]

13143

\[ {}x^{\prime \prime }-3 x^{\prime }-4 x = 2 t^{2} \]

13144

\[ {}x^{\prime \prime }+x = 9 \,{\mathrm e}^{-t} \]

13145

\[ {}x^{\prime \prime }-4 x = \cos \left (2 t \right ) \]

13146

\[ {}x^{\prime \prime }+x^{\prime }+2 x = t \sin \left (2 t \right ) \]

13147

\[ {}x^{\prime \prime }-b x^{\prime }+x = \sin \left (2 t \right ) \]

13148

\[ {}x^{\prime \prime }-3 x^{\prime }-40 x = 2 \,{\mathrm e}^{-t} \]

13149

\[ {}x^{\prime \prime }-2 x^{\prime } = 4 \]

13150

\[ {}x^{\prime \prime }+2 x = \cos \left (\sqrt {2}\, t \right ) \]

13151

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{100}+4 x = \cos \left (2 t \right ) \]

13152

\[ {}x^{\prime \prime }+w^{2} x = \cos \left (\beta t \right ) \]

13153

\[ {}x^{\prime \prime }+3025 x = \cos \left (45 t \right ) \]

13154

\[ {}x^{\prime \prime } = -\frac {x}{t^{2}} \]

13155

\[ {}x^{\prime \prime } = \frac {4 x}{t^{2}} \]

13156

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }+x = 0 \]

13157

\[ {}t x^{\prime \prime }+4 x^{\prime }+\frac {2 x}{t} = 0 \]

13158

\[ {}t^{2} x^{\prime \prime }-7 t x^{\prime }+16 x = 0 \]

13159

\[ {}t^{2} x^{\prime \prime }+3 t x^{\prime }-8 x = 0 \]

13160

\[ {}t^{2} x^{\prime \prime }+t x^{\prime } = 0 \]

13161

\[ {}t^{2} x^{\prime \prime }-t x^{\prime }+2 x = 0 \]

13162

\[ {}x^{\prime \prime }+t^{2} x^{\prime } = 0 \]

13163

\[ {}x^{\prime \prime }+x = \tan \left (t \right ) \]

13164

\[ {}x^{\prime \prime }-x = t \,{\mathrm e}^{t} \]

13165

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13166

\[ {}t^{2} x^{\prime \prime }-2 x = t^{3} \]

13167

\[ {}x^{\prime \prime }+x = \frac {1}{t +1} \]

13168

\[ {}x^{\prime \prime }-2 x^{\prime }+x = \frac {{\mathrm e}^{t}}{2 t} \]

13169

\[ {}x^{\prime \prime }+\frac {x^{\prime }}{t} = a \]

13170

\[ {}t^{2} x^{\prime \prime }-3 t x^{\prime }+3 x = 4 t^{7} \]

13171

\[ {}x^{\prime \prime }-x = \frac {{\mathrm e}^{t}}{1+{\mathrm e}^{t}} \]

13172

\[ {}x^{\prime \prime }+t x^{\prime }+x = 0 \]

13173

\[ {}x^{\prime \prime }-t x^{\prime }+x = 0 \]

13174

\[ {}x^{\prime \prime }-2 a x^{\prime }+a^{2} x = 0 \]

13175

\[ {}x^{\prime \prime }-\frac {\left (2+t \right ) x^{\prime }}{t}+\frac {\left (2+t \right ) x}{t^{2}} = 0 \]

13176

\[ {}t^{2} x^{\prime \prime }+t x^{\prime }+\left (t^{2}-\frac {1}{4}\right ) x = 0 \]

13177

\[ {}x^{\prime \prime \prime }+x^{\prime } = 0 \]

13178

\[ {}x^{\prime \prime \prime }+x^{\prime } = 1 \]

13179

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 0 \]

13180

\[ {}x^{\prime \prime \prime }-x^{\prime }-8 x = 0 \]

13181

\[ {}x^{\prime \prime \prime }+x^{\prime \prime } = 2 \,{\mathrm e}^{t}+3 t^{2} \]

13182

\[ {}x^{\prime \prime \prime }-8 x = 0 \]

13183

\[ {}x^{\prime \prime \prime }+x^{\prime \prime }-x^{\prime }-4 x = 0 \]

13184

\[ {}x^{\prime }+5 x = \operatorname {Heaviside}\left (t -2\right ) \]

13185

\[ {}x^{\prime }+x = \sin \left (2 t \right ) \]

13186

\[ {}x^{\prime \prime }-x^{\prime }-6 x = 0 \]

13187

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = 0 \]

13188

\[ {}x^{\prime \prime }-2 x^{\prime }+2 x = {\mathrm e}^{-t} \]

13189

\[ {}x^{\prime \prime }-x^{\prime } = 0 \]

13190

\[ {}x^{\prime \prime }+\frac {2 x^{\prime }}{5}+2 x = 1-\operatorname {Heaviside}\left (t -5\right ) \]

13191

\[ {}x^{\prime \prime }+9 x = \sin \left (3 t \right ) \]

13192

\[ {}x^{\prime \prime }-2 x = 1 \]

13193

\[ {}x^{\prime } = 2 x+\operatorname {Heaviside}\left (t -1\right ) \]

13194

\[ {}x^{\prime \prime }+4 x = \cos \left (2 t \right ) \operatorname {Heaviside}\left (2 \pi -t \right ) \]

13195

\[ {}x^{\prime } = x-2 \operatorname {Heaviside}\left (t -1\right ) \]

13196

\[ {}x^{\prime } = -x+\operatorname {Heaviside}\left (t -1\right )-\operatorname {Heaviside}\left (t -2\right ) \]

13197

\[ {}x^{\prime \prime }+\pi ^{2} x = \pi ^{2} \operatorname {Heaviside}\left (1-t \right ) \]

13198

\[ {}x^{\prime \prime }-4 x = 1-\operatorname {Heaviside}\left (t -1\right ) \]

13199

\[ {}x^{\prime \prime }+3 x^{\prime }+2 x = {\mathrm e}^{-4 t} \]

13200

\[ {}x^{\prime }+3 x = \delta \left (t -1\right )+\operatorname {Heaviside}\left (t -4\right ) \]