6.129 Problems 12801 to 12900

Table 6.257: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

12801

\[ {} \left (x^{2}+1\right ) {y^{\prime }}^{2} = 1 \]

12802

\[ {} {y^{\prime }}^{3}-\left (y^{2}+2 x \right ) {y^{\prime }}^{2}+\left (x^{2}-y^{2}+2 x y^{2}\right ) y^{\prime }-\left (x^{2}-y^{2}\right ) y^{2} = 0 \]

12803

\[ {} 2 x y^{\prime }-y+\ln \left (y^{\prime }\right ) = 0 \]

12804

\[ {} 4 x {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12805

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12806

\[ {} y^{\prime }+2 x y = x^{2}+y^{2} \]

12807

\[ {} y = -x y^{\prime }+x^{4} {y^{\prime }}^{2} \]

12808

\[ {} {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

12809

\[ {} x +y^{\prime } y \left (2 {y^{\prime }}^{2}+3\right ) = 0 \]

12810

\[ {} a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12811

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12812

\[ {} {y^{\prime }}^{3}-4 x y y^{\prime }+8 y^{2} = 0 \]

12813

\[ {} \left (x y^{\prime }-y\right )^{2} = 1+{y^{\prime }}^{2} \]

12814

\[ {} 4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 x y^{\prime }-1 = 0 \]

12815

\[ {} 4 \,{\mathrm e}^{2 y} {y^{\prime }}^{2}+2 \,{\mathrm e}^{2 x} y^{\prime }-{\mathrm e}^{2 x} = 0 \]

12816

\[ {} {\mathrm e}^{2 y} {y^{\prime }}^{3}+\left ({\mathrm e}^{2 x}+{\mathrm e}^{3 x}\right ) y^{\prime }-{\mathrm e}^{3 x} = 0 \]

12817

\[ {} x y^{2} {y^{\prime }}^{2}-y^{3} y^{\prime }+x = 0 \]

12818

\[ {} \left (x^{2}+y^{2}\right ) \left (1+y^{\prime }\right )^{2}-2 \left (x +y\right ) \left (1+y^{\prime }\right ) \left (x +y y^{\prime }\right )+\left (x +y y^{\prime }\right )^{2} = 0 \]

12819

\[ {} y = 2 x y^{\prime }+y^{2} {y^{\prime }}^{3} \]

12820

\[ {} a^{2} y {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

12821

\[ {} \left (x -y^{\prime }-y\right )^{2} = x^{2} \left (2 x y-x^{2} y^{\prime }\right ) \]

12822

\[ {} y^{2} \left (1+{y^{\prime }}^{2}\right ) = a^{2} \]

12823

\[ {} y y^{\prime } = \left (x -b \right ) {y^{\prime }}^{2}+a \]

12824

\[ {} x^{3} {y^{\prime }}^{2}+x^{2} y y^{\prime }+1 = 0 \]

12825

\[ {} 3 x {y^{\prime }}^{2}-6 y y^{\prime }+x +2 y = 0 \]

12826

\[ {} y = {y^{\prime }}^{2} \left (1+x \right ) \]

12827

\[ {} \left (x y^{\prime }-y\right ) \left (x +y y^{\prime }\right ) = a^{2} y^{\prime } \]

12828

\[ {} {y^{\prime }}^{2}+2 y^{\prime } y \cot \left (x \right ) = y^{2} \]

12829

\[ {} \left (x^{2}+1\right ) {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2}-1 = 0 \]

12830

\[ {} x^{2} {y^{\prime }}^{2}-2 \left (x y+2 y^{\prime }\right ) y^{\prime }+y^{2} = 0 \]

12831

\[ {} y = x y^{\prime }+\frac {y {y^{\prime }}^{2}}{x^{2}} \]

12832

\[ {} x^{2} {y^{\prime }}^{2}-2 x y y^{\prime }+y^{2} = x^{2} y^{2}+x^{4} \]

12833

\[ {} y = x y^{\prime }+\frac {1}{y^{\prime }} \]

12834

\[ {} x {y^{\prime }}^{2}-2 y y^{\prime }-x = 0 \]

12835

\[ {} x^{2} {y^{\prime }}^{2}-2 \left (x y-2\right ) y^{\prime }+y^{2} = 0 \]

12836

\[ {} x^{2} {y^{\prime }}^{2}-\left (x -1\right )^{2} = 0 \]

12837

\[ {} 8 \left (1+y^{\prime }\right )^{3} = 27 \left (x +y\right ) \left (1-y^{\prime }\right )^{3} \]

12838

\[ {} 4 {y^{\prime }}^{2} = 9 x \]

12839

\[ {} y \left (3-4 y\right )^{2} {y^{\prime }}^{2} = 4-4 y \]

12840

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = 0 \]

12841

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

12842

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

12843

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

12844

\[ {} 4 y^{\prime \prime \prime }-3 y^{\prime }+y = 0 \]

12845

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-y^{\prime }+y = 0 \]

12846

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-2 y^{\prime }-y = 0 \]

12847

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+9 y^{\prime } = 0 \]

12848

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = 0 \]

12849

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }+y^{\prime } = 0 \]

12850

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{-x} \]

12851

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{{\mathrm e}^{x}} \]

12852

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 2 \,{\mathrm e}^{-x}-x^{2} {\mathrm e}^{-x} \]

12853

\[ {} y^{\prime \prime }-2 y^{\prime }+y = \frac {{\mathrm e}^{x}}{\left (1-x \right )^{2}} \]

12854

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = {\mathrm e}^{x} \]

12855

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }-y^{\prime }+3 y = x^{2} \]

12856

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

12857

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+5 y^{\prime }-2 y = x \]

12858

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

12859

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

12860

\[ {} y^{\prime \prime }+4 y = x^{2}+\cos \left (x \right ) \]

12861

\[ {} y^{\prime \prime }-2 y^{\prime }+y = 2 \,{\mathrm e}^{2 x} x -\sin \left (x \right )^{2} \]

12862

\[ {} y^{\prime \prime }+y = 2 \,{\mathrm e}^{x}+x^{3}-x \]

12863

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 3 \,{\mathrm e}^{2 x}-\cos \left (x \right ) \]

12864

\[ {} y^{\prime \prime \prime }-y = x^{2} \]

12865

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-3 y^{\prime } = 3 x^{2}+\sin \left (x \right ) \]

12866

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = {\mathrm e}^{x}+4 \]

12867

\[ {} y^{\prime \prime }-2 y^{\prime } = {\mathrm e}^{2 x}+1 \]

12868

\[ {} y^{\prime \prime \prime \prime }+2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12869

\[ {} x^{3} y^{\prime \prime \prime }+x y^{\prime }-y = x \ln \left (x \right ) \]

12870

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+2 y = 10 x +\frac {10}{x} \]

12871

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \frac {1}{\left (1-x \right )^{2}} \]

12872

\[ {} \left (1+x \right )^{2} y^{\prime \prime }-\left (1+x \right ) y^{\prime }+6 y = x \]

12873

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = \cos \left (x \right )-{\mathrm e}^{2 x} \]

12874

\[ {} y^{\prime \prime \prime \prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

12875

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 2 x^{3}-x \,{\mathrm e}^{3 x} \]

12876

\[ {} y^{\prime \prime \prime }-4 y^{\prime } = x^{2}-3 \,{\mathrm e}^{2 x} \]

12877

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }+y = \cos \left (x \right ) \]

12878

\[ {} x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = \left (\ln \left (x \right )+1\right )^{2} \]

12879

\[ {} y^{\prime \prime \prime }+2 y^{\prime \prime }+y^{\prime } = x^{2}-x \]

12880

\[ {} y^{\prime \prime }+4 y = \sin \left (x \right )^{2} \]

12881

\[ {} y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

12882

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-3 y^{\prime \prime }+5 y^{\prime }-2 y = {\mathrm e}^{3 x} \]

12883

\[ {} y^{\prime \prime }+y = x \cos \left (x \right ) \]

12884

\[ {} x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {1}{x} \]

12885

\[ {} y^{\prime \prime \prime }-y = x \,{\mathrm e}^{x}+\cos \left (x \right )^{2} \]

12886

\[ {} y^{\prime \prime }-x^{2} y^{\prime }+x y = x \]

12887

\[ {} x y^{\prime \prime }-\left (2 x +1\right ) y^{\prime }+\left (1+x \right ) y = x^{2}-x -1 \]

12888

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

12889

\[ {} \left (1-x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1-x \right )^{2} \]

12890

\[ {} \sin \left (x \right ) y^{\prime \prime }+2 \cos \left (x \right ) y^{\prime }+3 \sin \left (x \right ) y = {\mathrm e}^{x} \]

12891

\[ {} y^{\prime \prime }-2 \tan \left (x \right ) y^{\prime }-\left (a^{2}+1\right ) y = 0 \]

12892

\[ {} 4 x^{2} y^{\prime \prime }+4 x^{3} y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

12893

\[ {} x y^{\prime \prime }+2 y^{\prime }-x y = 2 \,{\mathrm e}^{x} \]

12894

\[ {} y^{\prime \prime }+\left (2 \,{\mathrm e}^{x}-1\right ) y^{\prime }+{\mathrm e}^{2 x} y = {\mathrm e}^{4 x} \]

12895

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

12896

\[ {} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }+\cos \left (x \right )^{2} y = 0 \]

12897

\[ {} x^{6} y^{\prime \prime }+3 x^{5} y^{\prime }+y = \frac {1}{x^{2}} \]

12898

\[ {} x y^{\prime \prime }-\left (2 x^{2}+1\right ) y^{\prime }-8 x^{3} y = 4 x^{3} {\mathrm e}^{-x^{2}} \]

12899

\[ {} x y^{\prime \prime }-\left (x +3\right ) y^{\prime }+3 y = 0 \]

12900

\[ {} \left (x -3\right ) y^{\prime \prime }-\left (4 x -9\right ) y^{\prime }+\left (3 x -6\right ) y = 0 \]