6.139 Problems 13801 to 13900

Table 6.277: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

13801

\[ {} y = x y^{\prime }+{y^{\prime }}^{2} \]

13802

\[ {} y = x y^{\prime }+{y^{\prime }}^{2} \]

13803

\[ {} y^{\prime } = \frac {3 x -4 y-2}{3 x -4 y-3} \]

13804

\[ {} x^{\prime }-x \cot \left (t \right ) = 4 \sin \left (t \right ) \]

13805

\[ {} y = x^{2}+2 x y^{\prime }+\frac {{y^{\prime }}^{2}}{2} \]

13806

\[ {} y^{\prime }-\frac {3 y}{x}+x^{3} y^{2} = 0 \]

13807

\[ {} y \left (1+{y^{\prime }}^{2}\right ) = a \]

13808

\[ {} x^{2}-y+\left (x^{2} y^{2}+x \right ) y^{\prime } = 0 \]

13809

\[ {} 3 y^{2}-x +2 y \left (y^{2}-3 x \right ) y^{\prime } = 0 \]

13810

\[ {} \left (x -y\right ) y-x^{2} y^{\prime } = 0 \]

13811

\[ {} y^{\prime } = \frac {x +y-3}{y-x +1} \]

13812

\[ {} x y^{\prime }-y^{2} \ln \left (x \right )+y = 0 \]

13813

\[ {} \left (x^{2}-1\right ) y^{\prime }+2 x y-\cos \left (x \right ) = 0 \]

13814

\[ {} \left (4 y+2 x +3\right ) y^{\prime }-2 y-x -1 = 0 \]

13815

\[ {} \left (y^{2}-x \right ) y^{\prime }-y+x^{2} = 0 \]

13816

\[ {} \left (y^{2}-x^{2}\right ) y^{\prime }+2 x y = 0 \]

13817

\[ {} 3 x y^{2} y^{\prime }+y^{3}-2 x = 0 \]

13818

\[ {} {y^{\prime }}^{2}+\left (x +a \right ) y^{\prime }-y = 0 \]

13819

\[ {} {y^{\prime }}^{2}-2 x y^{\prime }+y = 0 \]

13820

\[ {} {y^{\prime }}^{2}+2 y y^{\prime } \cot \left (x \right )-y^{2} = 0 \]

13821

\[ {} y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

13822

\[ {} x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

13823

\[ {} y^{\prime }+y^{\prime \prime \prime }-3 y^{\prime \prime } = 0 \]

13824

\[ {} y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

13825

\[ {} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 2 \]

13826

\[ {} y^{\prime \prime }+y = \cosh \left (x \right ) \]

13827

\[ {} y^{\prime \prime }+\frac {2 {y^{\prime }}^{2}}{1-y} = 0 \]

13828

\[ {} x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

13829

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+{y^{\prime }}^{2}+1 = 0 \]

13830

\[ {} x^{3} x^{\prime \prime }+1 = 0 \]

13831

\[ {} y^{\prime \prime \prime \prime }-16 y = x^{2}-{\mathrm e}^{x} \]

13832

\[ {} {y^{\prime \prime \prime }}^{2}+{y^{\prime \prime }}^{2} = 1 \]

13833

\[ {} x^{\left (6\right )}-x^{\prime \prime \prime \prime } = 1 \]

13834

\[ {} x^{\prime \prime \prime \prime }-2 x^{\prime \prime }+x = t^{2}-3 \]

13835

\[ {} y^{\prime \prime }+4 x y = 0 \]

13836

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (9 x^{2}-\frac {1}{25}\right ) y = 0 \]

13837

\[ {} y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

13838

\[ {} y^{\prime \prime } = 3 \sqrt {y} \]

13839

\[ {} y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

13840

\[ {} u^{\prime \prime }+\frac {2 u^{\prime }}{r} = 0 \]

13841

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = \frac {y y^{\prime }}{\sqrt {x^{2}+1}} \]

13842

\[ {} y y^{\prime } y^{\prime \prime } = {y^{\prime }}^{3}+{y^{\prime \prime }}^{2} \]

13843

\[ {} x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

13844

\[ {} y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

13845

\[ {} y^{\prime \prime \prime }-y = {\mathrm e}^{x} \]

13846

\[ {} y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

13847

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }-6 y = 1 \]

13848

\[ {} m x^{\prime \prime } = f \left (x\right ) \]

13849

\[ {} m x^{\prime \prime } = f \left (x^{\prime }\right ) \]

13850

\[ {} y^{\left (6\right )}-3 y^{\left (5\right )}+3 y^{\prime \prime \prime \prime }-y^{\prime \prime \prime } = x \]

13851

\[ {} x^{\prime \prime \prime \prime }+2 x^{\prime \prime }+x = \cos \left (t \right ) \]

13852

\[ {} \left (1+x \right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }+y = 2 \cos \left (\ln \left (1+x \right )\right ) \]

13853

\[ {} x^{3} y^{\prime \prime }-x y^{\prime }+y = 0 \]

13854

\[ {} x^{\prime \prime \prime \prime }+x = t^{3} \]

13855

\[ {} {y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

13856

\[ {} x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

13857

\[ {} x y y^{\prime \prime }-x {y^{\prime }}^{2}-y y^{\prime } = 0 \]

13858

\[ {} y^{\left (6\right )}-y = {\mathrm e}^{2 x} \]

13859

\[ {} y^{\left (6\right )}+2 y^{\prime \prime \prime \prime }+y^{\prime \prime } = x +{\mathrm e}^{x} \]

13860

\[ {} 6 y^{\prime \prime } y^{\prime \prime \prime \prime }-5 {y^{\prime \prime \prime }}^{2} = 0 \]

13861

\[ {} x y^{\prime \prime } = y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right ) \]

13862

\[ {} y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

13863

\[ {} y^{\prime \prime } = 2 y^{3} \]

13864

\[ {} y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

13865

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = -x \left (t \right )] \]

13866

\[ {} [x^{\prime }\left (t \right )+5 x \left (t \right )+y \left (t \right ) = {\mathrm e}^{t}, y^{\prime }\left (t \right )-x \left (t \right )-3 y \left (t \right ) = {\mathrm e}^{2 t}] \]

13867

\[ {} [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = z \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )] \]

13868

\[ {} \left [x^{\prime }\left (t \right ) = y \left (t \right ), y^{\prime }\left (t \right ) = \frac {y \left (t \right )^{2}}{x \left (t \right )}\right ] \]

13869

\[ {} y^{\prime } = y \,{\mathrm e}^{x +y} \left (x^{2}+1\right ) \]

13870

\[ {} x^{2} y^{\prime } = 1+y^{2} \]

13871

\[ {} y^{\prime } = \sin \left (x y\right ) \]

13872

\[ {} x \left ({\mathrm e}^{y}+4\right ) = {\mathrm e}^{x +y} y^{\prime } \]

13873

\[ {} y^{\prime } = \cos \left (x +y\right ) \]

13874

\[ {} x y^{\prime }+y = x y^{2} \]

13875

\[ {} y^{\prime } = t \ln \left (y^{2 t}\right )+t^{2} \]

13876

\[ {} y^{\prime } = x \,{\mathrm e}^{y^{2}-x} \]

13877

\[ {} y^{\prime } = \ln \left (x y\right ) \]

13878

\[ {} x \left (y+1\right )^{2} = \left (x^{2}+1\right ) y \,{\mathrm e}^{y} y^{\prime } \]

13879

\[ {} y^{\prime \prime }+x^{2} y = 0 \]

13880

\[ {} y^{\prime \prime \prime }+x y = \sin \left (x \right ) \]

13881

\[ {} y^{\prime \prime }+y y^{\prime } = 1 \]

13882

\[ {} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime } = 2 x^{2}+3 \]

13883

\[ {} y^{\prime \prime }+y y^{\prime \prime \prime \prime } = 1 \]

13884

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13885

\[ {} y^{\prime } \cos \left (x \right )+y \,{\mathrm e}^{x^{2}} = \sinh \left (x \right ) \]

13886

\[ {} y^{\prime \prime \prime }+x y = \cosh \left (x \right ) \]

13887

\[ {} y y^{\prime } = 1 \]

13888

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+3 y = 0 \]

13889

\[ {} 5 y^{\prime }-x y = 0 \]

13890

\[ {} {y^{\prime }}^{2} \sqrt {y} = \sin \left (x \right ) \]

13891

\[ {} 2 y^{\prime \prime }+3 y^{\prime }+4 x^{2} y = 1 \]

13892

\[ {} y^{\prime \prime \prime } = 1 \]

13893

\[ {} x^{2} y^{\prime \prime }-y = \sin \left (x \right )^{2} \]

13894

\[ {} y^{\prime \prime } = y+x^{2} \]

13895

\[ {} y^{\prime \prime \prime }+x y^{\prime \prime }-y^{2} = \sin \left (x \right ) \]

13896

\[ {} {y^{\prime }}^{2}+x y {y^{\prime }}^{2} = \ln \left (x \right ) \]

13897

\[ {} \sin \left (y^{\prime \prime }\right )+y y^{\prime \prime \prime \prime } = 1 \]

13898

\[ {} \sinh \left (x \right ) {y^{\prime }}^{2}+y^{\prime \prime } = x y \]

13899

\[ {} y y^{\prime \prime } = 1 \]

13900

\[ {} {y^{\prime \prime \prime }}^{2}+\sqrt {y} = \sin \left (x \right ) \]