6.142 Problems 14101 to 14200

Table 6.283: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

14101

\[ {}[x^{\prime }\left (t \right )+5 x \left (t \right )-2 y \left (t \right ) = 0, y^{\prime }\left (t \right )+2 x \left (t \right )-y \left (t \right ) = 0] \]

14102

\[ {}[x^{\prime }\left (t \right )-3 x \left (t \right )+2 y \left (t \right ) = 0, y^{\prime }\left (t \right )-x \left (t \right )+3 y \left (t \right ) = 0] \]

14103

\[ {}[x^{\prime }\left (t \right )+x \left (t \right )-z \left (t \right ) = 0, y^{\prime }\left (t \right )-y \left (t \right )+x \left (t \right ) = 0, z^{\prime }\left (t \right )+x \left (t \right )+2 y \left (t \right )-3 z \left (t \right ) = 0] \]

14104

\[ {}\left [x^{\prime }\left (t \right ) = -\frac {x \left (t \right )}{2}+2 y \left (t \right )-3 z \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )-\frac {z \left (t \right )}{2}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+z \left (t \right )\right ] \]

14105

\[ {}[x^{\prime }\left (t \right )+y^{\prime }\left (t \right ) = y \left (t \right ), x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )] \]

14106

\[ {}[x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = t, x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )] \]

14107

\[ {}[x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )-t, 2 x^{\prime }\left (t \right )+3 y^{\prime }\left (t \right ) = 2 x \left (t \right )+6] \]

14108

\[ {}[2 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t, 3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = y \left (t \right )] \]

14109

\[ {}[5 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right ), 3 x^{\prime }\left (t \right )-y^{\prime }\left (t \right ) = t] \]

14110

\[ {}[x^{\prime }\left (t \right )-4 y^{\prime }\left (t \right ) = 0, 2 x^{\prime }\left (t \right )-3 y^{\prime }\left (t \right ) = y \left (t \right )+t] \]

14111

\[ {}[3 x^{\prime }\left (t \right )+2 y^{\prime }\left (t \right ) = \sin \left (t \right ), x^{\prime }\left (t \right )-2 y^{\prime }\left (t \right ) = x \left (t \right )+y \left (t \right )+t] \]

14112

\[ {}[x^{\prime }\left (t \right ) = -4 x \left (t \right )+9 y \left (t \right )+12 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )] \]

14113

\[ {}[x^{\prime }\left (t \right ) = -7 x \left (t \right )+6 y \left (t \right )+6 \,{\mathrm e}^{-t}, y^{\prime }\left (t \right ) = -12 x \left (t \right )+5 y \left (t \right )+37] \]

14114

\[ {}[x^{\prime }\left (t \right ) = -7 x \left (t \right )+10 y \left (t \right )+18 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -10 x \left (t \right )+9 y \left (t \right )+37] \]

14115

\[ {}[x^{\prime }\left (t \right ) = -14 x \left (t \right )+39 y \left (t \right )+78 \sinh \left (t \right ), y^{\prime }\left (t \right ) = -6 x \left (t \right )+16 y \left (t \right )+6 \cosh \left (t \right )] \]

14116

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+4 y \left (t \right )-2 z \left (t \right )-2 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+10 \cosh \left (t \right ), z^{\prime }\left (t \right ) = -x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5] \]

14117

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+6 y \left (t \right )-2 z \left (t \right )+50 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )+21 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -x \left (t \right )+6 y \left (t \right )+z \left (t \right )+9] \]

14118

\[ {}[x^{\prime }\left (t \right ) = -2 x \left (t \right )-2 y \left (t \right )+4 z \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+y \left (t \right )+2 z \left (t \right ), z^{\prime }\left (t \right ) = -4 x \left (t \right )-2 y \left (t \right )+6 z \left (t \right )+{\mathrm e}^{2 t}] \]

14119

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )+2 z \left (t \right )+2 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = -2 x \left (t \right )+2 y \left (t \right )-2 z \left (t \right )] \]

14120

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )+y \left (t \right )-1-6 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = -4 x \left (t \right )+3 y \left (t \right )+4 \,{\mathrm e}^{t}-3] \]

14121

\[ {}[x^{\prime }\left (t \right ) = 3 x \left (t \right )-2 y \left (t \right )+24 \sin \left (t \right ), y^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )+12 \cos \left (t \right )] \]

14122

\[ {}[x^{\prime }\left (t \right ) = 7 x \left (t \right )-4 y \left (t \right )+10 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 3 x \left (t \right )+14 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

14123

\[ {}[x^{\prime }\left (t \right ) = -7 x \left (t \right )+4 y \left (t \right )+6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = -5 x \left (t \right )+2 y \left (t \right )+6 \,{\mathrm e}^{2 t}] \]

14124

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )-3 y \left (t \right )+z \left (t \right ), y^{\prime }\left (t \right ) = 2 y \left (t \right )+2 z \left (t \right )+29 \,{\mathrm e}^{-t}, z^{\prime }\left (t \right ) = 5 x \left (t \right )+y \left (t \right )+z \left (t \right )+39 \,{\mathrm e}^{t}] \]

14125

\[ {}[x^{\prime }\left (t \right ) = 2 x \left (t \right )+y \left (t \right )-z \left (t \right )+5 \sin \left (t \right ), y^{\prime }\left (t \right ) = y \left (t \right )+z \left (t \right )-10 \cos \left (t \right ), z^{\prime }\left (t \right ) = x \left (t \right )+z \left (t \right )+2] \]

14126

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+3 y \left (t \right )+z \left (t \right )+5 \sin \left (2 t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-5 y \left (t \right )-3 z \left (t \right )+5 \cos \left (2 t \right ), z^{\prime }\left (t \right ) = -3 x \left (t \right )+7 y \left (t \right )+3 z \left (t \right )+23 \,{\mathrm e}^{t}] \]

14127

\[ {}[x^{\prime }\left (t \right ) = -3 x \left (t \right )+y \left (t \right )-3 z \left (t \right )+2 \,{\mathrm e}^{t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )-y \left (t \right )+2 z \left (t \right )+4 \,{\mathrm e}^{t}, z^{\prime }\left (t \right ) = 4 x \left (t \right )-2 y \left (t \right )+3 z \left (t \right )+4 \,{\mathrm e}^{t}] \]

14128

\[ {}[x^{\prime }\left (t \right ) = x \left (t \right )+5 y \left (t \right )+10 \sinh \left (t \right ), y^{\prime }\left (t \right ) = 19 x \left (t \right )-13 y \left (t \right )+24 \sinh \left (t \right )] \]

14129

\[ {}[x^{\prime }\left (t \right ) = 9 x \left (t \right )-3 y \left (t \right )-6 t, y^{\prime }\left (t \right ) = -x \left (t \right )+11 y \left (t \right )+10 t] \]

14130

\[ {}\left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

14131

\[ {}x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

14134

\[ {}y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{4 x^{2}}\right ) y = x \]

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]

14136

\[ {}x^{2} y^{\prime \prime }+x \left (x -\frac {1}{2}\right ) y^{\prime }+\frac {y}{2} = 0 \]

14137

\[ {}x^{2} y^{\prime \prime }+x \left (1+x \right ) y^{\prime }-y = 0 \]

14138

\[ {}x \left (1-x \right ) y^{\prime \prime }+\left (1-5 x \right ) y^{\prime }-4 y = 0 \]

14139

\[ {}\left (x^{2}-1\right )^{2} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y = 0 \]

14140

\[ {}x y^{\prime \prime }+4 y^{\prime }-x y = 0 \]

14141

\[ {}2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }-k y = 0 \]

14142

\[ {}x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

14143

\[ {}x^{2} y^{\prime \prime }+y^{\prime }-2 y = 0 \]

14144

\[ {}2 x^{2} y^{\prime \prime }+x \left (1-x \right ) y^{\prime }-y = 0 \]

14145

\[ {}x \left (x -1\right ) y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

14146

\[ {}y^{\prime \prime }-x^{2} y = 0 \]

14147

\[ {}x y^{\prime \prime }+y^{\prime }+y = 0 \]

14148

\[ {}x y^{\prime \prime }+x^{2} y = 0 \]

14149

\[ {}y^{\prime \prime }+\alpha ^{2} y = 0 \]

14150

\[ {}y^{\prime \prime }-\alpha ^{2} y = 0 \]

14151

\[ {}y^{\prime \prime }+\beta y^{\prime }+\gamma y = 0 \]

14152

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

14153

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (-\nu ^{2}+x^{2}\right ) y = \sin \left (x \right ) \]

14154

\[ {}y^{\prime }+y \cos \left (x \right ) = \frac {\sin \left (2 x \right )}{2} \]

14155

\[ {}{y^{\prime }}^{2}-y^{\prime }-x y^{\prime }+y = 0 \]

14156

\[ {}y {y^{\prime }}^{2}+2 x y^{\prime }-y = 0 \]

14157

\[ {}x y \left (1-{y^{\prime }}^{2}\right ) = \left (-y^{2}-a^{2}+x^{2}\right ) y^{\prime } \]

14158

\[ {}y^{\prime \prime \prime }+\frac {3 y^{\prime \prime }}{x} = 0 \]

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

14160

\[ {}\left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }-a^{2} y = 0 \]

14161

\[ {}y^{\prime \prime }+\frac {2 y^{\prime }}{x} = 0 \]

14162

\[ {}-x y^{\prime }+y = 0 \]

14163

\[ {}\left (1+u \right ) v+\left (1-v\right ) u v^{\prime } = 0 \]

14164

\[ {}1+y-\left (1-x \right ) y^{\prime } = 0 \]

14165

\[ {}\left (t^{2}+t^{2} x\right ) x^{\prime }+x^{2}+t x^{2} = 0 \]

14166

\[ {}y-a +x^{2} y^{\prime } = 0 \]

14167

\[ {}z-\left (-a^{2}+t^{2}\right ) z^{\prime } = 0 \]

14168

\[ {}y^{\prime } = \frac {1+y^{2}}{x^{2}+1} \]

14169

\[ {}1+s^{2}-\sqrt {t}\, s^{\prime } = 0 \]

14170

\[ {}r^{\prime }+r \tan \left (t \right ) = 0 \]

14171

\[ {}\left (x^{2}+1\right ) y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14172

\[ {}\sqrt {-x^{2}+1}\, y^{\prime }-\sqrt {1-y^{2}} = 0 \]

14173

\[ {}3 \,{\mathrm e}^{x} \tan \left (y\right )+\left (1-{\mathrm e}^{x}\right ) \sec \left (y\right )^{2} y^{\prime } = 0 \]

14174

\[ {}x -x y^{2}+\left (y-x^{2} y\right ) y^{\prime } = 0 \]

14175

\[ {}y-x +\left (x +y\right ) y^{\prime } = 0 \]

14176

\[ {}x +y+x y^{\prime } = 0 \]

14177

\[ {}x +y+\left (y-x \right ) y^{\prime } = 0 \]

14178

\[ {}x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

14179

\[ {}8 y+10 x +\left (5 y+7 x \right ) y^{\prime } = 0 \]

14180

\[ {}2 \sqrt {s t}-s+t s^{\prime } = 0 \]

14181

\[ {}t -s+t s^{\prime } = 0 \]

14182

\[ {}y^{2} y^{\prime } x = y^{3}+x^{3} \]

14183

\[ {}x \cos \left (\frac {y}{x}\right ) \left (x y^{\prime }+y\right ) = y \sin \left (\frac {y}{x}\right ) \left (x y^{\prime }-y\right ) \]

14184

\[ {}3 y-7 x +7-\left (3 x -7 y-3\right ) y^{\prime } = 0 \]

14185

\[ {}x +2 y+1-\left (4 y+2 x +3\right ) y^{\prime } = 0 \]

14186

\[ {}x +2 y+1-\left (2 x -3\right ) y^{\prime } = 0 \]

14187

\[ {}\frac {-x y^{\prime }+y}{\sqrt {x^{2}+y^{2}}} = m \]

14188

\[ {}\frac {x +y y^{\prime }}{\sqrt {x^{2}+y^{2}}} = m \]

14189

\[ {}y+\frac {x}{y^{\prime }} = \sqrt {x^{2}+y^{2}} \]

14190

\[ {}y y^{\prime } = -x +\sqrt {x^{2}+y^{2}} \]

14191

\[ {}y^{\prime }-\frac {2 y}{1+x} = \left (1+x \right )^{3} \]

14192

\[ {}y^{\prime }-\frac {a y}{x} = \frac {1+x}{x} \]

14193

\[ {}\left (-x^{2}+x \right ) y^{\prime }+\left (2 x^{2}-1\right ) y-a \,x^{3} = 0 \]

14194

\[ {}s^{\prime } \cos \left (t \right )+s \sin \left (t \right ) = 1 \]

14195

\[ {}s^{\prime }+s \cos \left (t \right ) = \frac {\sin \left (2 t \right )}{2} \]

14196

\[ {}y^{\prime }-\frac {n y}{x} = {\mathrm e}^{x} x^{n} \]

14197

\[ {}y^{\prime }+\frac {n y}{x} = a \,x^{-n} \]

14198

\[ {}y^{\prime }+y = {\mathrm e}^{-x} \]

14199

\[ {}y^{\prime }+\frac {\left (1-2 x \right ) y}{x^{2}}-1 = 0 \]

14200

\[ {}y^{\prime }+x y = x^{3} y^{3} \]