5.2.46 Problems 4501 to 4600

Table 5.259: Second order linear ODE

#

ODE

Mathematica

Maple

15622

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15623

\[ {}y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

15624

\[ {}y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]

15626

\[ {}y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15627

\[ {}y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

15630

\[ {}y^{\prime \prime } = \delta \left (t -3\right ) \]

15631

\[ {}y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]

15633

\[ {}y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

15634

\[ {}y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]

15636

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

15637

\[ {}y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]

15638

\[ {}y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

15639

\[ {}y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

15640

\[ {}y^{\prime \prime }+y = \delta \left (t \right ) \]

15641

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

15642

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]

15643

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

15644

\[ {}y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

15781

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

15785

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

15793

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15794

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15795

\[ {}x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

15796

\[ {}x^{\prime \prime }+x = \cos \left (t \right ) t -\cos \left (t \right ) \]

15797

\[ {}y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

15800

\[ {}x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

15801

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

15822

\[ {}y^{\prime \prime }-y^{\prime }-12 y = 0 \]

15823

\[ {}y^{\prime \prime }+9 y^{\prime } = 0 \]

15826

\[ {}t^{2} y^{\prime \prime }-12 t y^{\prime }+42 y = 0 \]

15827

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+5 y = 0 \]

15835

\[ {}16 y^{\prime \prime }+24 y^{\prime }+153 y = 0 \]

15844

\[ {}y^{\prime \prime }+4 y^{\prime }-5 y = 0 \]

15845

\[ {}y^{\prime \prime }-6 y^{\prime }+45 y = 0 \]

15846

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }-16 y = 0 \]

15847

\[ {}x^{2} y^{\prime \prime }+3 x y^{\prime }+2 y = 0 \]

15848

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = x \]

15849

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 2 \]

15857

\[ {}y^{\prime \prime }+4 y = t \]

15858

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

16001

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{t}+\frac {y}{t^{2}} = \frac {1}{t} \]

16177

\[ {}y^{\prime \prime }-y = 0 \]

16178

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

16179

\[ {}2 t^{2} y^{\prime \prime }-3 t y^{\prime }-3 y = 0 \]

16180

\[ {}y^{\prime \prime }+9 y = 0 \]

16181

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 0 \]

16182

\[ {}y^{\prime \prime }+9 y = 0 \]

16183

\[ {}3 t^{2} y^{\prime \prime }-5 t y^{\prime }-3 y = 0 \]

16184

\[ {}t^{2} y^{\prime \prime }+7 t y^{\prime }-7 y = 0 \]

16185

\[ {}y^{\prime \prime }+y = 2 \cos \left (t \right ) \]

16186

\[ {}y^{\prime \prime }+10 y^{\prime }+24 y = 0 \]

16187

\[ {}y^{\prime \prime }+16 y = 0 \]

16188

\[ {}y^{\prime \prime }+6 y^{\prime }+18 y = 0 \]

16189

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-y = 0 \]

16190

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

16191

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 0 \]

16192

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16193

\[ {}y^{\prime \prime }+10 y^{\prime }+25 y = 0 \]

16194

\[ {}y^{\prime \prime }+9 y = 0 \]

16195

\[ {}y^{\prime \prime }+49 y = 0 \]

16196

\[ {}t^{2} y^{\prime \prime }+4 t y^{\prime }-4 y = 0 \]

16197

\[ {}t^{2} y^{\prime \prime }+6 t y^{\prime }+6 y = 0 \]

16198

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-\frac {1}{4}\right ) y = 0 \]

16199

\[ {}t^{2} y^{\prime \prime }+3 t y^{\prime }+y = 0 \]

16200

\[ {}a y^{\prime \prime }+b y^{\prime }+c y = 0 \]

16201

\[ {}t^{2} y^{\prime \prime }+a t y^{\prime }+b y = 0 \]

16202

\[ {}4 t^{2} y^{\prime \prime }+4 t y^{\prime }+\left (36 t^{2}-1\right ) y = 0 \]

16203

\[ {}t y^{\prime \prime }+2 y^{\prime }+16 t y = 0 \]

16204

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16205

\[ {}y^{\prime \prime }+b \left (t \right ) y^{\prime }+c \left (t \right ) y = 0 \]

16206

\[ {}y^{\prime \prime } = 0 \]

16207

\[ {}y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

16208

\[ {}y^{\prime \prime }+y^{\prime } = 0 \]

16209

\[ {}y^{\prime \prime }+3 y^{\prime }-4 y = 0 \]

16210

\[ {}y^{\prime \prime }+8 y^{\prime }+12 y = 0 \]

16211

\[ {}y^{\prime \prime }+5 y^{\prime }+y = 0 \]

16212

\[ {}8 y^{\prime \prime }+6 y^{\prime }+y = 0 \]

16213

\[ {}4 y^{\prime \prime }+9 y = 0 \]

16214

\[ {}y^{\prime \prime }+16 y = 0 \]

16215

\[ {}y^{\prime \prime }+8 y = 0 \]

16216

\[ {}y^{\prime \prime }+7 y = 0 \]

16217

\[ {}4 y^{\prime \prime }+21 y^{\prime }+5 y = 0 \]

16218

\[ {}7 y^{\prime \prime }+4 y^{\prime }-3 y = 0 \]

16219

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

16220

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

16221

\[ {}y^{\prime \prime }-y^{\prime } = 0 \]

16222

\[ {}3 y^{\prime \prime }-y^{\prime } = 0 \]

16223

\[ {}y^{\prime \prime }+y^{\prime }-12 y = 0 \]

16224

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = 0 \]

16225

\[ {}2 y^{\prime \prime }-7 y^{\prime }-4 y = 0 \]

16226

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

16227

\[ {}y^{\prime \prime }+36 y = 0 \]

16228

\[ {}y^{\prime \prime }+100 y = 0 \]

16229

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 0 \]

16230

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

16231

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

16232

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = 0 \]

16233

\[ {}y^{\prime \prime }+y^{\prime }-y = 0 \]

16234

\[ {}y^{\prime \prime }+y^{\prime }+y = 0 \]

16235

\[ {}y^{\prime \prime }-y^{\prime }+y = 0 \]