5.4.31 Problems 3001 to 3100

Table 5.475: Second ODE homogeneous ODE

#

ODE

Mathematica

Maple

15229

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15230

\[ {}\sin \left (y\right ) y^{\prime \prime }+\cos \left (y\right ) {y^{\prime }}^{2} = 0 \]

15231

\[ {}y^{\prime \prime } = y^{\prime } \]

15232

\[ {}y y^{\prime \prime }+{y^{\prime }}^{2} = 2 y y^{\prime } \]

15233

\[ {}y^{2} y^{\prime \prime }+y^{\prime \prime }+2 y {y^{\prime }}^{2} = 0 \]

15234

\[ {}y^{\prime \prime } = 4 x \sqrt {y^{\prime }} \]

15236

\[ {}x y^{\prime \prime } = {y^{\prime }}^{2}-y^{\prime } \]

15238

\[ {}y y^{\prime \prime }-{y^{\prime }}^{2} = y^{\prime } \]

15239

\[ {}y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15240

\[ {}\left (-3+y\right ) y^{\prime \prime } = {y^{\prime }}^{2} \]

15242

\[ {}y^{\prime \prime } = y^{\prime } \left (y^{\prime }-2\right ) \]

15244

\[ {}x y^{\prime \prime } = 2 y^{\prime } \]

15245

\[ {}y^{\prime \prime } = y^{\prime } \]

15251

\[ {}3 y y^{\prime \prime } = 2 {y^{\prime }}^{2} \]

15252

\[ {}y y^{\prime \prime }+2 {y^{\prime }}^{2} = 3 y y^{\prime } \]

15253

\[ {}y^{\prime \prime } = -y^{\prime } {\mathrm e}^{-y} \]

15254

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

15255

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

15256

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

15257

\[ {}y^{\prime \prime } = -2 x {y^{\prime }}^{2} \]

15258

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15259

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15260

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15261

\[ {}y^{\prime \prime } = 2 y y^{\prime } \]

15263

\[ {}y^{\prime \prime }+x^{2} y^{\prime }-4 y = 0 \]

15264

\[ {}y^{\prime \prime }+x^{2} y^{\prime } = 4 y \]

15265

\[ {}y^{\prime \prime }+x^{2} y^{\prime }+4 y = y^{3} \]

15268

\[ {}\left (1+y\right ) y^{\prime \prime } = {y^{\prime }}^{3} \]

15272

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

15273

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15274

\[ {}x^{2} y^{\prime \prime }-6 x y^{\prime }+12 y = 0 \]

15275

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15276

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

15277

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

15278

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

15279

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

15280

\[ {}y^{\prime \prime }+y = 0 \]

15281

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

15282

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \cos \left (x \right ) \sin \left (x \right ) y^{\prime }+\left (1+\cos \left (x \right )^{2}\right ) y = 0 \]

15283

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

15284

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15285

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

15296

\[ {}y^{\prime \prime }+4 y = 0 \]

15297

\[ {}y^{\prime \prime }-4 y = 0 \]

15298

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 0 \]

15299

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

15300

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15301

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15302

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15303

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15304

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

15305

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15306

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15309

\[ {}y^{\prime \prime }-4 y = 0 \]

15310

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = 0 \]

15311

\[ {}y^{\prime \prime }-10 y^{\prime }+9 y = 0 \]

15312

\[ {}y^{\prime \prime }+5 y^{\prime } = 0 \]

15315

\[ {}y^{\prime \prime }-7 y^{\prime }+10 y = 0 \]

15316

\[ {}y^{\prime \prime }+2 y^{\prime }-24 y = 0 \]

15317

\[ {}y^{\prime \prime }-25 y = 0 \]

15318

\[ {}y^{\prime \prime }+3 y^{\prime } = 0 \]

15319

\[ {}4 y^{\prime \prime }-y = 0 \]

15320

\[ {}3 y^{\prime \prime }+7 y^{\prime }-6 y = 0 \]

15321

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15322

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15323

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 0 \]

15324

\[ {}y^{\prime \prime }-9 y = 0 \]

15325

\[ {}y^{\prime \prime }-9 y = 0 \]

15326

\[ {}y^{\prime \prime }-9 y = 0 \]

15327

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = 0 \]

15328

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 0 \]

15329

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

15330

\[ {}25 y^{\prime \prime }-10 y^{\prime }+y = 0 \]

15331

\[ {}16 y^{\prime \prime }-24 y^{\prime }+9 y = 0 \]

15332

\[ {}9 y^{\prime \prime }+12 y^{\prime }+4 y = 0 \]

15333

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15334

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15335

\[ {}y^{\prime \prime }-8 y^{\prime }+16 y = 0 \]

15336

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15337

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15338

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

15339

\[ {}y^{\prime \prime }+25 y = 0 \]

15340

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 0 \]

15341

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

15342

\[ {}y^{\prime \prime }-4 y^{\prime }+29 y = 0 \]

15343

\[ {}9 y^{\prime \prime }+18 y^{\prime }+10 y = 0 \]

15344

\[ {}4 y^{\prime \prime }+y = 0 \]

15345

\[ {}y^{\prime \prime }+16 y = 0 \]

15346

\[ {}y^{\prime \prime }+16 y = 0 \]

15347

\[ {}y^{\prime \prime }+16 y = 0 \]

15348

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15349

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15350

\[ {}y^{\prime \prime }-4 y^{\prime }+13 y = 0 \]

15351

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15352

\[ {}y^{\prime \prime }-y^{\prime }+\left (\frac {1}{4}+4 \pi ^{2}\right ) y = 0 \]

15379

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

15380

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

15381

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

15382

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15383

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]