5.11.3 Problems 201 to 300

Table 5.807: Third and higher order homogeneous ODE

#

ODE

Mathematica

Maple

4144

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

4145

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }-5 y^{\prime }-6 y = 0 \]

4146

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

4147

\[ {}y^{\prime \prime \prime }+4 y^{\prime } = 0 \]

4148

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

4149

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-9 y^{\prime \prime }-11 y^{\prime }-4 y = 0 \]

4150

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

4151

\[ {}y^{\prime \prime \prime }-y = 0 \]

4165

\[ {}x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

4414

\[ {}y^{\prime \prime \prime } = 2 \left (y^{\prime \prime }-1\right ) \cot \left (x \right ) \]

4444

\[ {}y^{\prime \prime \prime }-2 y^{\prime \prime }+y^{\prime }-2 y = 0 \]

4445

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }+9 y^{\prime }+9 y = 0 \]

4446

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y = 0 \]

4447

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

4448

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

4449

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

4450

\[ {}y^{\prime \prime \prime \prime }+18 y^{\prime \prime }+81 y = 0 \]

4451

\[ {}y^{\prime \prime \prime \prime }-4 y^{\prime \prime }+16 y = 0 \]

4452

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+2 y^{\prime \prime }-2 y^{\prime }+y = 0 \]

4453

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+5 y^{\prime \prime }+5 y^{\prime }-6 y = 0 \]

4454

\[ {}y^{\left (5\right )}-6 y^{\prime \prime \prime \prime }+9 y^{\prime \prime \prime } = 0 \]

4455

\[ {}y^{\left (6\right )}-64 y = 0 \]

5921

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-10 y^{\prime }-6 y = 0 \]

5922

\[ {}y^{\prime \prime \prime \prime }-y^{\prime \prime \prime }-4 y^{\prime \prime }+4 y^{\prime } = 0 \]

5923

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+y^{\prime \prime }-4 y^{\prime }-2 y = 0 \]

5924

\[ {}y^{\prime \prime \prime \prime }-a^{2} y = 0 \]

5927

\[ {}y^{\prime \prime \prime \prime } = 0 \]

5929

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

5930

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

5932

\[ {}y^{\prime \prime \prime \prime }+3 y^{\prime \prime \prime } = 0 \]

5933

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime } = 0 \]

5934

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }-11 y^{\prime \prime }-12 y^{\prime }+36 y = 0 \]

5935

\[ {}36 y^{\prime \prime \prime \prime }-37 y^{\prime \prime }+4 y^{\prime }+5 y = 0 \]

5936

\[ {}y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y = 0 \]

5939

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+6 y = 0 \]

5941

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime }+4 y = 0 \]

5942

\[ {}y^{\prime \prime \prime }+8 y = 0 \]

5943

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

5944

\[ {}y^{\left (5\right )}+2 y^{\prime \prime \prime }+y^{\prime } = 0 \]

5949

\[ {}3 y^{\prime \prime \prime }+5 y^{\prime \prime }+y^{\prime }-y = 0 \]

6147

\[ {}y^{\prime \prime \prime }+y = 0 \]

6148

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime } = 0 \]

6149

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }-9 y^{\prime }-5 y = 0 \]

6150

\[ {}y^{\prime \prime \prime \prime }+4 y = 0 \]

6210

\[ {}y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime } = 0 \]

6229

\[ {}y^{\prime \prime \prime \prime }-2 y^{\prime \prime \prime }+13 y^{\prime \prime }-18 y^{\prime }+36 y = 0 \]

6389

\[ {}x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

6391

\[ {}x^{\prime \prime \prime \prime }+x = 0 \]

6392

\[ {}x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

6555

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

6692

\[ {}y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y = 0 \]

6702

\[ {}y^{\prime \prime \prime }+y^{\prime \prime }-2 y^{\prime } = 0 \]

6704

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+12 y^{\prime \prime }-8 y^{\prime } = 0 \]

6707

\[ {}y^{\prime \prime \prime }-y^{\prime \prime }+9 y^{\prime }-9 y = 0 \]

6708

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime } = 0 \]

6709

\[ {}y^{\prime \prime \prime \prime }-6 y^{\prime \prime \prime }+13 y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

6710

\[ {}y^{\left (6\right )}+9 y^{\prime \prime \prime \prime }+24 y^{\prime \prime }+16 y = 0 \]

6780

\[ {}\left (2 x^{3}-1\right ) y^{\prime \prime \prime }-6 x^{2} y^{\prime \prime }+6 x y^{\prime } = 0 \]

6877

\[ {}x y^{\prime \prime \prime }-{y^{\prime }}^{4}+y = 0 \]

6878

\[ {}t^{5} y^{\prime \prime \prime \prime }-t^{3} y^{\prime \prime }+6 y = 0 \]

6913

\[ {}x^{2} y^{\prime \prime \prime }-3 x y^{\prime \prime }+3 y^{\prime } = 0 \]

6931

\[ {}y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0 \]

6932

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+20 x y^{\prime }-78 y = 0 \]

7485

\[ {}y^{\prime \prime \prime }-2 x y^{\prime \prime }+4 x^{2} y^{\prime }+8 x^{3} y = 0 \]

7488

\[ {}x^{4} y^{\prime \prime \prime \prime }-x^{2} y^{\prime \prime }+y = 0 \]

7526

\[ {}3 {y^{\prime \prime }}^{2}-y^{\prime } y^{\prime \prime \prime }-y^{\prime \prime } {y^{\prime }}^{2} = 0 \]

7532

\[ {}y^{\left (5\right )}-\frac {y^{\prime \prime \prime \prime }}{t} = 0 \]

7553

\[ {}a y^{\prime \prime } y^{\prime \prime \prime } = \sqrt {1+{y^{\prime \prime }}^{2}} \]

7554

\[ {}a^{2} y^{\prime \prime \prime \prime } = y^{\prime \prime } \]

7640

\[ {}y^{\prime \prime \prime }-8 y = 0 \]

7641

\[ {}y^{\prime \prime \prime \prime }+16 y = 0 \]

7642

\[ {}y^{\prime \prime \prime }-5 y^{\prime \prime }+6 y^{\prime } = 0 \]

7643

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+4 y^{\prime }-4 i y = 0 \]

7644

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

7645

\[ {}y^{\prime \prime \prime \prime }-16 y = 0 \]

7646

\[ {}y^{\prime \prime \prime }-3 y^{\prime }-2 y = 0 \]

7647

\[ {}y^{\prime \prime \prime }-3 i y^{\prime \prime }-3 y^{\prime }+i y = 0 \]

7648

\[ {}y^{\prime \prime \prime }-4 y^{\prime } = 0 \]

7649

\[ {}y^{\left (5\right )}-y^{\prime \prime \prime \prime }-y^{\prime }+y = 0 \]

7652

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

7653

\[ {}y^{\left (5\right )}+2 y = 0 \]

7654

\[ {}y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+4 y = 0 \]

7655

\[ {}y^{\prime \prime \prime }+y = 0 \]

7656

\[ {}y^{\prime \prime \prime }-i y^{\prime \prime }+y^{\prime }-i y = 0 \]

7658

\[ {}y^{\prime \prime \prime \prime }-k^{4} y = 0 \]

7683

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = 0 \]

7695

\[ {}y^{\prime \prime \prime }-x y = 0 \]

7703

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7806

\[ {}2 y^{\prime \prime \prime }+y^{\prime \prime }-5 y^{\prime }+2 y = 0 \]

8016

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+2 y^{\prime } = 0 \]

8017

\[ {}y^{\prime \prime \prime }-3 y^{\prime \prime }+4 y^{\prime }-2 y = 0 \]

8018

\[ {}y^{\prime \prime \prime }-y = 0 \]

8019

\[ {}y^{\prime \prime \prime }+y = 0 \]

8020

\[ {}y^{\prime \prime \prime }+3 y^{\prime \prime }+3 y^{\prime }+y = 0 \]

8021

\[ {}y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }+6 y^{\prime \prime }+4 y^{\prime }+y = 0 \]

8022

\[ {}y^{\prime \prime \prime \prime }-y = 0 \]

8023

\[ {}y^{\prime \prime \prime \prime }+5 y^{\prime \prime }+4 y = 0 \]

8024

\[ {}y^{\prime \prime \prime \prime }-2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

8025

\[ {}y^{\prime \prime \prime \prime }+2 a^{2} y^{\prime \prime }+a^{4} y = 0 \]

8026

\[ {}y^{\prime \prime \prime \prime }+2 y^{\prime \prime \prime }+2 y^{\prime \prime }+2 y^{\prime }+y = 0 \]