5.24.33 Problems 3201 to 3300

Table 5.1079: Second or higher order ODE with non-constant coefficients

#

ODE

Mathematica

Maple

15275

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15276

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

15277

\[ {}y^{\prime \prime }-\left (4+\frac {2}{x}\right ) y^{\prime }+\left (4+\frac {4}{x}\right ) y = 0 \]

15278

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = 0 \]

15279

\[ {}y^{\prime \prime }-\frac {y^{\prime }}{x}-4 x^{2} y = 0 \]

15281

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 0 \]

15282

\[ {}\sin \left (x \right )^{2} y^{\prime \prime }-2 \sin \left (x \right ) \cos \left (x \right ) y^{\prime }+\left (\cos \left (x \right )^{2}+1\right ) y = 0 \]

15283

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

15284

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15285

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

15288

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15289

\[ {}x^{2} y^{\prime \prime }-20 y = 27 x^{5} \]

15290

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15291

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15295

\[ {}x^{3} y^{\prime \prime \prime }-4 y^{\prime \prime }+10 y^{\prime }-12 y = 0 \]

15300

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15301

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15302

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15303

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15304

\[ {}\left (1+x \right )^{2} y^{\prime \prime }-2 \left (1+x \right ) y^{\prime }+2 y = 0 \]

15305

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 0 \]

15306

\[ {}x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

15379

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = 0 \]

15380

\[ {}x^{2} y^{\prime \prime }-2 y = 0 \]

15381

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime } = 0 \]

15382

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15383

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 0 \]

15384

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 0 \]

15385

\[ {}4 x^{2} y^{\prime \prime }+y = 0 \]

15386

\[ {}x^{2} y^{\prime \prime }-19 x y^{\prime }+100 y = 0 \]

15387

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+29 y = 0 \]

15388

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+10 y = 0 \]

15389

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+29 y = 0 \]

15390

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+y = 0 \]

15391

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

15392

\[ {}4 x^{2} y^{\prime \prime }+37 y = 0 \]

15393

\[ {}x^{2} y^{\prime \prime }+x y^{\prime } = 0 \]

15394

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-25 y = 0 \]

15395

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+5 y = 0 \]

15396

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 0 \]

15397

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-10 y = 0 \]

15398

\[ {}4 x^{2} y^{\prime \prime }+4 x y^{\prime }-y = 0 \]

15399

\[ {}x^{2} y^{\prime \prime }-11 x y^{\prime }+36 y = 0 \]

15400

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15401

\[ {}x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

15402

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+13 y = 0 \]

15403

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }-4 x y^{\prime }+4 y = 0 \]

15404

\[ {}x^{3} y^{\prime \prime \prime }+2 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15405

\[ {}x^{3} y^{\prime \prime \prime }-5 x^{2} y^{\prime \prime }+14 x y^{\prime }-18 y = 0 \]

15406

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+7 x y^{\prime }-8 y = 0 \]

15407

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+15 x^{2} y^{\prime \prime }+9 x y^{\prime }+16 y = 0 \]

15408

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 0 \]

15409

\[ {}x^{4} y^{\prime \prime \prime \prime }+2 x^{3} y^{\prime \prime \prime }+x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

15410

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }+7 x^{2} y^{\prime \prime }+x y^{\prime }-y = 0 \]

15419

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 10 x +12 \]

15425

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 1 \]

15426

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = x \]

15427

\[ {}x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y = 22 x +24 \]

15428

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x^{2} \]

15429

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = x \]

15430

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 1 \]

15431

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+15 y = 4 x^{2}+2 x +3 \]

15505

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+8 y = \frac {5}{x^{3}} \]

15506

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }+y = \frac {50}{x^{3}} \]

15507

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 85 \cos \left (2 \ln \left (x \right )\right ) \]

15508

\[ {}x^{2} y^{\prime \prime }-2 y = 15 \cos \left (3 \ln \left (x \right )\right )-10 \sin \left (3 \ln \left (x \right )\right ) \]

15509

\[ {}3 x^{2} y^{\prime \prime }-7 x y^{\prime }+3 y = 4 x^{3} \]

15510

\[ {}2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = \frac {10}{x} \]

15511

\[ {}x^{2} y^{\prime \prime }-5 x y^{\prime }+9 y = 6 x^{3} \]

15512

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = 64 \ln \left (x \right ) x^{2} \]

15513

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 3 \sqrt {x} \]

15519

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-y = \sqrt {x} \]

15520

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 12 x^{3} \]

15521

\[ {}x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = x^{2} \]

15522

\[ {}x^{2} y^{\prime \prime }+5 x y^{\prime }+4 y = \ln \left (x \right ) \]

15523

\[ {}x^{2} y^{\prime \prime }-2 y = \frac {1}{x -2} \]

15524

\[ {}x y^{\prime \prime }-y^{\prime }-4 x^{3} y = x^{3} {\mathrm e}^{x^{2}} \]

15525

\[ {}x y^{\prime \prime }+\left (2+2 x \right ) y^{\prime }+2 y = 8 \,{\mathrm e}^{2 x} \]

15526

\[ {}\left (1+x \right ) y^{\prime \prime }+x y^{\prime }-y = \left (1+x \right )^{2} \]

15527

\[ {}x^{2} y^{\prime \prime }-2 x y^{\prime }-4 y = \frac {10}{x} \]

15530

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = x^{3} \]

15531

\[ {}x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }+6 x y^{\prime }-6 y = {\mathrm e}^{-x^{2}} \]

15534

\[ {}x^{4} y^{\prime \prime \prime \prime }+6 x^{3} y^{\prime \prime \prime }-3 x^{2} y^{\prime \prime }-9 x y^{\prime }+9 y = 12 \sin \left (x^{2}\right ) x \]

15537

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

15540

\[ {}x^{2} y^{\prime \prime }-7 x y^{\prime }+16 y = 0 \]

15541

\[ {}2 x y^{\prime \prime }+y^{\prime } = \sqrt {x} \]

15545

\[ {}x^{2} y^{\prime \prime }+7 x y^{\prime }+9 y = 0 \]

15546

\[ {}x^{2} y^{\prime \prime }+\frac {5 y}{2} = 0 \]

15548

\[ {}x^{2} y^{\prime \prime }-6 y = 0 \]

15550

\[ {}y^{\prime \prime } = {y^{\prime }}^{2} \]

15551

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }+9 y = 0 \]

15553

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-30 y = 0 \]

15556

\[ {}4 x^{2} y^{\prime \prime }+8 x y^{\prime }+y = 0 \]

15558

\[ {}2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

15559

\[ {}9 x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

15563

\[ {}x y^{\prime \prime } = 3 y^{\prime } \]

15569

\[ {}x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 3 \sqrt {x} \]

15572

\[ {}x^{2} y^{\prime \prime }+2 x y^{\prime }-6 y = 18 \ln \left (x \right ) \]

15574

\[ {}2 x^{2} y^{\prime \prime }-x y^{\prime }-2 y = 10 x^{2} \]

15576

\[ {}x y^{\prime \prime }-y^{\prime } = -3 x {y^{\prime }}^{3} \]