5.27.4 Problems 301 to 400

Table 5.1173: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

3164

\[ {}y^{\prime \prime }+9 y = \sec \left (x \right ) \csc \left (x \right ) \]

3165

\[ {}y^{\prime \prime }+9 y = \csc \left (2 x \right ) \]

3166

\[ {}y^{\prime \prime }+y = \tan \left (\frac {x}{3}\right )^{2} \]

3168

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = {\mathrm e}^{\frac {x}{2}} \ln \left (x \right ) \]

3170

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

3172

\[ {}y^{\prime \prime }-5 y^{\prime }+6 y = x^{2} \]

3173

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{x} \]

3174

\[ {}y^{\prime \prime }+3 y = 3 \,{\mathrm e}^{-4 x} \]

3175

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

3176

\[ {}y^{\prime \prime }+y^{\prime }-2 y = {\mathrm e}^{-2 x} \]

3177

\[ {}y^{\prime \prime }+2 y = \sin \left (x \right ) \]

3178

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{3 x}}{2}-\frac {{\mathrm e}^{-3 x}}{2} \]

3179

\[ {}y^{\prime \prime }+3 y^{\prime }-2 y = \sin \left (2 x \right ) \]

3180

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{x} \sin \left (x \right ) \]

3184

\[ {}y^{\prime \prime }+y = {\mathrm e}^{3 x} \left (1+\sin \left (2 x \right )\right ) \]

3185

\[ {}y^{\prime \prime }+2 n^{2} y^{\prime }+n^{4} y = \sin \left (k x \right ) \]

3186

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \frac {{\mathrm e}^{x}}{2}+\frac {{\mathrm e}^{-x}}{2} \]

3187

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{-x} \]

3188

\[ {}y^{\prime \prime }+4 y = x \,{\mathrm e}^{x} \]

3189

\[ {}y^{\prime \prime }+2 y = x^{2} {\mathrm e}^{-x} \]

3190

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2}-8 \]

3205

\[ {}y^{\prime \prime }+4 y = x \sin \left (x \right ) \]

3206

\[ {}y^{\prime \prime }+y = x^{2} \cos \left (x \right ) \]

3207

\[ {}y^{\prime \prime }-y = x^{2} \cos \left (x \right ) \]

3210

\[ {}2 y^{\prime \prime }+3 y^{\prime }-2 y = {\mathrm e}^{x} x^{2} \]

3214

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = x^{2} \cos \left (x \right ) \]

3215

\[ {}y^{\prime \prime }-4 y^{\prime }+3 y = x^{2} \sin \left (x \right ) \]

3216

\[ {}y^{\prime \prime }-y = \sin \left (2 x \right ) x \]

3217

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{3} \sin \left (2 x \right ) \]

3218

\[ {}y^{\prime \prime }-y^{\prime } = x \,{\mathrm e}^{2 x} \sin \left (x \right ) \]

3219

\[ {}y^{\prime \prime }-4 y = x \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3220

\[ {}y^{\prime \prime }+2 y^{\prime } = x^{2} {\mathrm e}^{-x} \sin \left (x \right ) \]

3244

\[ {}y^{\prime \prime } = \cos \left (t \right ) \]

3272

\[ {}y^{\prime \prime } = \sec \left (x \right ) \tan \left (x \right ) \]

3484

\[ {}x^{\prime \prime }+\omega _{0}^{2} x = a \cos \left (\omega t \right ) \]

3486

\[ {}f^{\prime \prime }+2 f^{\prime }+5 f = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

3487

\[ {}f^{\prime \prime }+6 f^{\prime }+9 f = {\mathrm e}^{-t} \]

3488

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3489

\[ {}f^{\prime \prime }+8 f^{\prime }+12 f = 12 \,{\mathrm e}^{-4 t} \]

3490

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 4 \,{\mathrm e}^{-x} \]

3496

\[ {}y^{\prime \prime }-y = x^{n} \]

3497

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 x \,{\mathrm e}^{x} \]

3584

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

3585

\[ {}y^{\prime \prime } = x^{n} \]

3587

\[ {}y^{\prime \prime } = \cos \left (x \right ) \]

3589

\[ {}y^{\prime \prime } = x \,{\mathrm e}^{x} \]

3711

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 18 \,{\mathrm e}^{5 x} \]

3712

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 x^{2}+5 \]

3716

\[ {}y^{\prime \prime }+y = 6 \,{\mathrm e}^{x} \]

3717

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 5 x \,{\mathrm e}^{-2 x} \]

3718

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

3719

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{2 x} \]

3720

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 3 \sin \left (2 x \right ) \]

3724

\[ {}y^{\prime \prime }+9 y = 5 \cos \left (2 x \right ) \]

3725

\[ {}y^{\prime \prime }-y = 9 \,{\mathrm e}^{2 x} x \]

3726

\[ {}y^{\prime \prime }+y^{\prime }-2 y = -10 \sin \left (x \right ) \]

3727

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 4 \cos \left (x \right )-2 \sin \left (x \right ) \]

3728

\[ {}y^{\prime \prime }+\omega ^{2} y = \frac {F_{0} \cos \left (\omega t \right )}{m} \]

3729

\[ {}y^{\prime \prime }-4 y^{\prime }+6 y = 7 \,{\mathrm e}^{2 x} \]

3732

\[ {}y^{\prime \prime }+2 y^{\prime }-3 y = \sin \left (x \right )^{2} \]

3733

\[ {}y^{\prime \prime }+6 y = \sin \left (x \right )^{2} \cos \left (x \right )^{2} \]

3734

\[ {}y^{\prime \prime }-16 y = 20 \cos \left (4 x \right ) \]

3735

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 50 \sin \left (3 x \right ) \]

3736

\[ {}y^{\prime \prime }-y = 10 \,{\mathrm e}^{2 x} \cos \left (x \right ) \]

3737

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 169 \sin \left (3 x \right ) \]

3738

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 40 \sin \left (x \right )^{2} \]

3739

\[ {}y^{\prime \prime }+y = 3 \,{\mathrm e}^{x} \cos \left (2 x \right ) \]

3740

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 2 \sin \left (x \right ) {\mathrm e}^{-x} \]

3741

\[ {}y^{\prime \prime }-4 y = 100 x \,{\mathrm e}^{x} \sin \left (x \right ) \]

3742

\[ {}y^{\prime \prime }+2 y^{\prime }+5 y = 4 \,{\mathrm e}^{-x} \cos \left (2 x \right ) \]

3743

\[ {}y^{\prime \prime }-2 y^{\prime }+10 y = 24 \,{\mathrm e}^{x} \cos \left (3 x \right ) \]

3744

\[ {}y^{\prime \prime }+16 y = 34 \,{\mathrm e}^{x}+16 \cos \left (4 x \right )-8 \sin \left (4 x \right ) \]

3745

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 4 \,{\mathrm e}^{3 x} \ln \left (x \right ) \]

3746

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {{\mathrm e}^{-2 x}}{x^{2}} \]

3747

\[ {}y^{\prime \prime }+9 y = 18 \sec \left (3 x \right )^{3} \]

3748

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {2 \,{\mathrm e}^{-3 x}}{x^{2}+1} \]

3749

\[ {}y^{\prime \prime }-4 y = \frac {8}{1+{\mathrm e}^{2 x}} \]

3750

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = {\mathrm e}^{2 x} \tan \left (x \right ) \]

3751

\[ {}y^{\prime \prime }+9 y = \frac {36}{4-\cos \left (3 x \right )^{2}} \]

3752

\[ {}y^{\prime \prime }-10 y^{\prime }+25 y = \frac {2 \,{\mathrm e}^{5 x}}{x^{2}+4} \]

3753

\[ {}y^{\prime \prime }-6 y^{\prime }+13 y = 4 \,{\mathrm e}^{3 x} \sec \left (2 x \right )^{2} \]

3754

\[ {}y^{\prime \prime }+y = \sec \left (x \right )+4 \,{\mathrm e}^{x} \]

3755

\[ {}y^{\prime \prime }+y = \csc \left (x \right )+2 x^{2}+5 x +1 \]

3756

\[ {}y^{\prime \prime }-y = 2 \tanh \left (x \right ) \]

3757

\[ {}y^{\prime \prime }-2 m y^{\prime }+m^{2} y = \frac {{\mathrm e}^{m x}}{x^{2}+1} \]

3758

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \frac {4 \,{\mathrm e}^{x} \ln \left (x \right )}{x^{3}} \]

3759

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \frac {{\mathrm e}^{-x}}{\sqrt {-x^{2}+4}} \]

3760

\[ {}y^{\prime \prime }+2 y^{\prime }+17 y = \frac {64 \,{\mathrm e}^{-x}}{3+\sin \left (4 x \right )^{2}} \]

3761

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = \frac {4 \,{\mathrm e}^{-2 x}}{x^{2}+1}+2 x^{2}-1 \]

3762

\[ {}y^{\prime \prime }+4 y^{\prime }+4 y = 15 \,{\mathrm e}^{-2 x} \ln \left (x \right )+25 \cos \left (x \right ) \]

3767

\[ {}y^{\prime \prime }-9 y = F \left (x \right ) \]

3768

\[ {}y^{\prime \prime }+5 y^{\prime }+4 y = F \left (x \right ) \]

3769

\[ {}y^{\prime \prime }+y^{\prime }-2 y = F \left (x \right ) \]

3770

\[ {}y^{\prime \prime }+4 y^{\prime }-12 y = F \left (x \right ) \]

3771

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 5 \,{\mathrm e}^{2 x} x \]

3772

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

3789

\[ {}y^{\prime \prime }+y = \csc \left (x \right ) \]

3792

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = 15 \,{\mathrm e}^{3 x} \sqrt {x} \]

3793

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = 4 \,{\mathrm e}^{2 x} \ln \left (x \right ) \]

3797

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = 4 \,{\mathrm e}^{-3 x} \]