4.7.18 Problems 1701 to 1800

Table 4.593: Solved using series method

#

ODE

Mathematica

Maple

Sympy

16455

\[ {} \left (x^{2}-3 x -4\right ) y^{\prime \prime }-\left (1+x \right ) y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

16456

\[ {} \left (x^{2}-25\right )^{2} y^{\prime \prime }-\left (5+x \right ) y^{\prime }+10 y = 0 \]

16457

\[ {} 2 x y^{\prime \prime }-5 y^{\prime }-3 y = 0 \]

16458

\[ {} 5 x y^{\prime \prime }+8 y^{\prime }-x y = 0 \]

16459

\[ {} 9 x y^{\prime \prime }+14 y^{\prime }+\left (x -1\right ) y = 0 \]

16460

\[ {} 7 x y^{\prime \prime }+10 y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

16461

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x -1\right ) y = 0 \]

16462

\[ {} x y^{\prime \prime }+2 x y^{\prime }+y = 0 \]

16463

\[ {} y^{\prime \prime }+\frac {8 y^{\prime }}{3 x}-\left (\frac {2}{3 x^{2}}-1\right ) y = 0 \]

16464

\[ {} y^{\prime \prime }+\left (\frac {16}{3 x}-1\right ) y^{\prime }-\frac {16 y}{3 x^{2}} = 0 \]

16465

\[ {} y^{\prime \prime }+\left (\frac {1}{2 x}-2\right ) y^{\prime }-\frac {35 y}{16 x^{2}} = 0 \]

16466

\[ {} y^{\prime \prime }-\left (\frac {1}{x}+2\right ) y^{\prime }+\left (x +\frac {1}{x^{2}}\right ) y = 0 \]

16467

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }-7 y = 0 \]

16468

\[ {} x^{2} y^{\prime \prime }+3 x y^{\prime }+y = 0 \]

16469

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+4 y = 0 \]

16470

\[ {} y^{\prime \prime }+x y = 0 \]

16471

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-k^{2}+x^{2}\right ) y = 0 \]

16472

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+k \left (k +1\right ) y = 0 \]

16473

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {1}{2}-3 x \right ) y^{\prime }-y = 0 \]

16474

\[ {} x \left (1-x \right ) y^{\prime \prime }+y^{\prime }+2 y = 0 \]

16475

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }+2 y = 0 \]

16476

\[ {} x y^{\prime \prime }+\left (1-x \right ) y^{\prime }+k y = 0 \]

16477

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

16478

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (16 x^{2}-25\right ) y = 0 \]

16535

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

16536

\[ {} y^{\prime \prime }+2 y^{\prime }-3 y = x \,{\mathrm e}^{x} \]

16537

\[ {} \left (2 x^{2}-1\right ) y^{\prime \prime }+2 x y^{\prime }-3 y = 0 \]

16538

\[ {} 3 x y^{\prime \prime }+11 y^{\prime }-y = 0 \]

16539

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y = 0 \]

16540

\[ {} x^{2} y^{\prime \prime }-7 x y^{\prime }+\left (-2 x^{2}+7\right ) y = 0 \]

16541

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (2 x +1\right ) y^{\prime }+10 y = 0 \]

16542

\[ {} x \left (1+x \right ) y^{\prime \prime }+\left (1-2 x \right ) y^{\prime }-10 y = 0 \]

17119

\[ {} y^{\prime } = 1-x y \]

17120

\[ {} y^{\prime } = \frac {y-x}{x +y} \]

17121

\[ {} y^{\prime } = y \sin \left (x \right ) \]

17122

\[ {} y^{\prime \prime }+x y = 0 \]

17123

\[ {} y^{\prime \prime }-\sin \left (x \right ) y^{\prime } = 0 \]

17124

\[ {} x y^{\prime \prime }+y \sin \left (x \right ) = x \]

17125

\[ {} \ln \left (x \right ) y^{\prime \prime }-y \sin \left (x \right ) = 0 \]

17126

\[ {} y^{\prime \prime \prime }+x \sin \left (y\right ) = 0 \]

17127

\[ {} y^{\prime }-2 x y = 0 \]

17128

\[ {} y^{\prime \prime }+x y^{\prime }+y = 0 \]

17129

\[ {} y^{\prime \prime }-x y^{\prime }+y = 1 \]

17130

\[ {} y^{\prime \prime }-\left (x^{2}+1\right ) y = 0 \]

17131

\[ {} y^{\prime \prime } = x^{2} y-y^{\prime } \]

17132

\[ {} y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

17133

\[ {} y^{\prime } = {\mathrm e}^{y}+x y \]

17134

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

17135

\[ {} \left (1+x \right ) y^{\prime }-n y = 0 \]

17136

\[ {} 9 x \left (1-x \right ) y^{\prime \prime }-12 y^{\prime }+4 y = 0 \]

18328

\[ {} y^{\prime } = 2 x y \]

18329

\[ {} y^{\prime }+y = 1 \]

18330

\[ {} x y^{\prime } = y \]

18331

\[ {} x^{2} y^{\prime } = y \]

18332

\[ {} y^{\prime } = 1+y^{2} \]

18333

\[ {} y^{\prime } = x -y \]

18334

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+2 x y^{\prime }-2 y = 0 \]

18336

\[ {} y^{\prime \prime }+x y^{\prime }+y = 0 \]

18337

\[ {} y^{\prime \prime }+y^{\prime }-x y = 0 \]

18338

\[ {} y^{\prime \prime }+x y = 0 \]

18339

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+n^{2} y = 0 \]

18340

\[ {} y^{\prime \prime }-2 x y^{\prime }+2 n y = 0 \]

18341

\[ {} x^{3} \left (x -1\right ) y^{\prime \prime }-2 \left (x -1\right ) y^{\prime }+3 x y = 0 \]

18342

\[ {} x^{2} \left (x^{2}-1\right )^{2} y^{\prime \prime }-x \left (1-x \right ) y^{\prime }+2 y = 0 \]

18343

\[ {} x^{2} y^{\prime \prime }+\left (2-x \right ) y^{\prime } = 0 \]

18344

\[ {} \left (3 x +1\right ) x y^{\prime \prime }-\left (1+x \right ) y^{\prime }+2 y = 0 \]

18345

\[ {} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18346

\[ {} x y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18347

\[ {} x^{2} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18348

\[ {} x^{3} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18349

\[ {} x^{4} y^{\prime \prime }+y \sin \left (x \right ) = 0 \]

18350

\[ {} x^{3} y^{\prime \prime }+\left (-1+\cos \left (2 x \right )\right ) y^{\prime }+2 x y = 0 \]

18351

\[ {} 4 x^{2} y^{\prime \prime }+\left (2 x^{4}-5 x \right ) y^{\prime }+\left (3 x^{2}+2\right ) y = 0 \]

18352

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }+y = 0 \]

18353

\[ {} 2 x y^{\prime \prime }+\left (3-x \right ) y^{\prime }-y = 0 \]

18354

\[ {} 2 x y^{\prime \prime }+\left (1+x \right ) y^{\prime }+3 y = 0 \]

18355

\[ {} 2 x^{2} y^{\prime \prime }+x y^{\prime }-\left (1+x \right ) y = 0 \]

18356

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+x^{2} y = 0 \]

18357

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x^{2}}-\frac {y}{x^{3}} = 0 \]

18358

\[ {} y^{\prime \prime }+\frac {n y^{\prime }}{x^{2}}+\frac {q y}{x^{3}} = 0 \]

18359

\[ {} x^{2} y^{\prime \prime }-3 x y^{\prime }+\left (4 x +4\right ) y = 0 \]

18360

\[ {} 4 x^{2} y^{\prime \prime }-8 x^{2} y^{\prime }+\left (4 x^{2}+1\right ) y = 0 \]

18361

\[ {} x y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

18362

\[ {} x^{2} y^{\prime \prime }-x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

18363

\[ {} x y^{\prime \prime }-y^{\prime }+4 x^{3} y = 0 \]

18364

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-1\right ) y = 0 \]

18365

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

18366

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (\frac {3}{2}-2 x \right ) y^{\prime }+2 y = 0 \]

18367

\[ {} \left (2 x^{2}+2 x \right ) y^{\prime \prime }+\left (1+5 x \right ) y^{\prime }+y = 0 \]

18368

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+\left (5 x +4\right ) y^{\prime }+4 y = 0 \]

18369

\[ {} \left (x^{2}-x -6\right ) y^{\prime \prime }+\left (5+3 x \right ) y^{\prime }+y = 0 \]

18370

\[ {} x \left (1-x \right ) y^{\prime \prime }+\left (1-3 x \right ) y^{\prime }-y = 0 \]

18371

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]

18372

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (-n^{2}+x^{2}\right ) y = 0 \]

18897

\[ {} \left (-x^{2}+x \right ) y^{\prime \prime }+4 y^{\prime }+2 y = 0 \]

18898

\[ {} x^{4} y^{\prime \prime }+x y^{\prime }+y = \frac {1}{x} \]

18899

\[ {} y^{\prime \prime }+y = 0 \]

18900

\[ {} \left (2 x^{2}+1\right ) y^{\prime \prime }+x y^{\prime }+2 y = 0 \]

18901

\[ {} 2 x^{2} y^{\prime \prime }-x y^{\prime }+\left (-x^{2}+1\right ) y = x^{2} \]

18902

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+n \left (n +1\right ) y = 0 \]