5.27.11 Problems 1001 to 1100

Table 5.1187: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

13486

\[ {}y^{\prime \prime }-y = 3 \,{\mathrm e}^{x} x^{2} \]

13487

\[ {}y^{\prime \prime }+y = 3 x^{2}-4 \sin \left (x \right ) \]

13488

\[ {}y^{\prime \prime }+4 y = 8 \sin \left (2 x \right ) \]

13491

\[ {}y^{\prime \prime }-6 y^{\prime }+8 y = x^{3}+x +{\mathrm e}^{-2 x} \]

13492

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x}+{\mathrm e}^{3 x} \sin \left (3 x \right ) \]

13493

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \left (1+\cos \left (x \right )\right ) \]

13494

\[ {}y^{\prime \prime }-6 y^{\prime }+9 y = x^{4} {\mathrm e}^{x}+x^{3} {\mathrm e}^{2 x}+x^{2} {\mathrm e}^{3 x} \]

13495

\[ {}y^{\prime \prime }+6 y^{\prime }+13 y = x \,{\mathrm e}^{-3 x} \sin \left (2 x \right )+x^{2} {\mathrm e}^{-2 x} \sin \left (3 x \right ) \]

13505

\[ {}y^{\prime \prime }+y = \cot \left (x \right ) \]

13506

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{2} \]

13507

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

13508

\[ {}y^{\prime \prime }+y = \sec \left (x \right )^{3} \]

13509

\[ {}y^{\prime \prime }+4 y = \sec \left (x \right )^{2} \]

13510

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \tan \left (x \right ) \]

13511

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = {\mathrm e}^{-2 x} \sec \left (x \right ) \]

13512

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{x} \tan \left (2 x \right ) \]

13513

\[ {}y^{\prime \prime }+6 y^{\prime }+9 y = \frac {{\mathrm e}^{-3 x}}{x^{3}} \]

13514

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \,{\mathrm e}^{x} \ln \left (x \right ) \]

13515

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \csc \left (x \right ) \]

13516

\[ {}y^{\prime \prime }+y = \tan \left (x \right )^{3} \]

13517

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{x}} \]

13518

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {1}{1+{\mathrm e}^{2 x}} \]

13519

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )+1} \]

13520

\[ {}y^{\prime \prime }-2 y^{\prime }+y = {\mathrm e}^{x} \arcsin \left (x \right ) \]

13521

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \frac {{\mathrm e}^{-x}}{x} \]

13522

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x \ln \left (x \right ) \]

13648

\[ {}y^{\prime \prime }+4 y = 8 \]

13650

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 18 \,{\mathrm e}^{-t} \sin \left (3 t \right ) \]

13651

\[ {}y^{\prime \prime }+2 y^{\prime }+y = t \,{\mathrm e}^{-2 t} \]

13652

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = 4 \,{\mathrm e}^{-3 t} t \]

13653

\[ {}y^{\prime \prime }-8 y^{\prime }+15 y = 9 t \,{\mathrm e}^{2 t} \]

13656

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 2 & 0<t <4 \\ 0 & 4<t \end {array}\right . \]

13657

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = \left \{\begin {array}{cc} 6 & 0<t <2 \\ 0 & 2<t \end {array}\right . \]

13658

\[ {}y^{\prime \prime }+4 y^{\prime }+5 y = \left \{\begin {array}{cc} 1 & 0<t <\frac {\pi }{2} \\ 0 & \frac {\pi }{2}<t \end {array}\right . \]

13659

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \left \{\begin {array}{cc} 3 & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

13660

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} -4 t +8 \pi & 0<t <2 \pi \\ 0 & 2<t \end {array}\right . \]

13661

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <\pi \\ \pi & \pi <t \end {array}\right . \]

13765

\[ {}x^{\prime \prime }-4 x = t^{2} \]

13766

\[ {}x^{\prime \prime }-4 x^{\prime } = t^{2} \]

13767

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 3 \,{\mathrm e}^{-t} \]

13768

\[ {}x^{\prime \prime }+x^{\prime }-2 x = {\mathrm e}^{t} \]

13769

\[ {}x^{\prime \prime }+2 x^{\prime }+x = {\mathrm e}^{-t} \]

13770

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\alpha t \right ) \]

13771

\[ {}x^{\prime \prime }+\omega ^{2} x = \sin \left (\omega t \right ) \]

13772

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \]

13773

\[ {}x^{\prime \prime }+2 x^{\prime }+10 x = {\mathrm e}^{-t} \cos \left (3 t \right ) \]

13774

\[ {}x^{\prime \prime }+6 x^{\prime }+10 x = {\mathrm e}^{-2 t} \cos \left (t \right ) \]

13775

\[ {}x^{\prime \prime }+4 x^{\prime }+4 x = {\mathrm e}^{2 t} \]

13776

\[ {}x^{\prime \prime }+x^{\prime }-2 x = 12 \,{\mathrm e}^{-t}-6 \,{\mathrm e}^{t} \]

13777

\[ {}x^{\prime \prime }+4 x = 289 t \,{\mathrm e}^{t} \sin \left (2 t \right ) \]

13778

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\alpha t \right ) \]

13779

\[ {}x^{\prime \prime }+\omega ^{2} x = \cos \left (\omega t \right ) \]

13790

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{x} \]

13791

\[ {}x^{\prime \prime }-x = \frac {1}{t} \]

13792

\[ {}y^{\prime \prime }+4 y = \cot \left (2 x \right ) \]

13794

\[ {}x^{\prime \prime }-4 x^{\prime } = \tan \left (t \right ) \]

13900

\[ {}y^{\prime \prime }-6 y^{\prime }+10 y = 100 \]

13901

\[ {}x^{\prime \prime }+x = \sin \left (t \right )-\cos \left (2 t \right ) \]

13903

\[ {}y^{\prime \prime }+y = \frac {1}{\sin \left (x \right )^{3}} \]

13905

\[ {}y^{\prime \prime }+y = \cosh \left (x \right ) \]

13907

\[ {}x^{\prime \prime }-4 x^{\prime }+4 x = {\mathrm e}^{t}+{\mathrm e}^{2 t}+1 \]

13918

\[ {}y^{\prime \prime }+y = 1-\frac {1}{\sin \left (x \right )} \]

13922

\[ {}x^{\prime \prime }+9 x = t \sin \left (3 t \right ) \]

13923

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \sinh \left (x \right ) \]

13925

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]

13934

\[ {}{y^{\prime \prime }}^{3}+y^{\prime \prime }+1 = x \]

13935

\[ {}x^{\prime \prime }+10 x^{\prime }+25 x = 2^{t}+t \,{\mathrm e}^{-5 t} \]

13941

\[ {}y^{\prime \prime }+y = \sin \left (3 x \right ) \cos \left (x \right ) \]

13973

\[ {}y^{\prime \prime } = x^{2}+y \]

14045

\[ {}y^{\prime \prime }+2 y^{\prime }+3 y = 9 t \]

14046

\[ {}4 y^{\prime \prime }+16 y^{\prime }+17 y = 17 t -1 \]

14047

\[ {}4 y^{\prime \prime }+5 y^{\prime }+4 y = 3 \,{\mathrm e}^{-t} \]

14048

\[ {}y^{\prime \prime }-4 y^{\prime }+4 y = t^{2} {\mathrm e}^{2 t} \]

14049

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-2 t} \]

14050

\[ {}2 y^{\prime \prime }-3 y^{\prime }+17 y = 17 t -1 \]

14051

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

14052

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = 2+t \]

14054

\[ {}y^{\prime \prime }+8 y^{\prime }+20 y = \sin \left (2 t \right ) \]

14055

\[ {}4 y^{\prime \prime }-4 y^{\prime }+y = t^{2} \]

14056

\[ {}2 y^{\prime \prime }+y^{\prime }-y = 4 \sin \left (t \right ) \]

14058

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 7 \,{\mathrm e}^{-2 t} \]

14061

\[ {}y^{\prime \prime }+9 y = 24 \sin \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )+\operatorname {Heaviside}\left (t -\pi \right )\right ) \]

14062

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \]

14063

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 5 \cos \left (t \right ) \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14064

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 36 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )\right ) \]

14065

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 39 \operatorname {Heaviside}\left (t \right )-507 \left (t -2\right ) \operatorname {Heaviside}\left (t -2\right ) \]

14066

\[ {}y^{\prime \prime }+4 y = 3 \operatorname {Heaviside}\left (t \right )-3 \operatorname {Heaviside}\left (t -4\right )+\left (2 t -5\right ) \operatorname {Heaviside}\left (t -4\right ) \]

14067

\[ {}4 y^{\prime \prime }+4 y^{\prime }+5 y = 25 t \left (\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )\right ) \]

14068

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )+\operatorname {Heaviside}\left (t -2\right )-\operatorname {Heaviside}\left (t -3\right ) \]

14069

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 4 & 0\le t <1 \\ 6 & 1\le t \end {array}\right . \]

14070

\[ {}y^{\prime \prime }-3 y^{\prime }+2 y = \left \{\begin {array}{cc} 0 & 0\le t <1 \\ 1 & 1\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14071

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0\le t <2 \\ -1 & 2\le t \end {array}\right . \]

14072

\[ {}y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0\le t <\pi \\ -t & \pi \le t \end {array}\right . \]

14073

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t & 0\le t <\frac {\pi }{2} \\ 8 \pi & \frac {\pi }{2}\le t \end {array}\right . \]

14074

\[ {}y^{\prime \prime }+4 \pi ^{2} y = 3 \delta \left (t -\frac {1}{3}\right )-\delta \left (t -1\right ) \]

14075

\[ {}y^{\prime \prime }+2 y^{\prime }+2 y = 3 \delta \left (t -1\right ) \]

14076

\[ {}y^{\prime \prime }+4 y^{\prime }+29 y = 5 \delta \left (t -\pi \right )-5 \delta \left (t -2 \pi \right ) \]

14077

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 1-\delta \left (t -1\right ) \]

14078

\[ {}4 y^{\prime \prime }+4 y^{\prime }+y = {\mathrm e}^{-\frac {t}{2}} \delta \left (t -1\right ) \]

14079

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \delta \left (t -1\right ) \]