5.27.12 Problems 1101 to 1200

Table 5.1189: Second order, Linear, non-homogeneous and constant coefficients

#

ODE

Mathematica

Maple

14092

\[ {}y^{\prime \prime }+2 y^{\prime }+y = 1 \]

14093

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = {\mathrm e}^{t} \]

14094

\[ {}y^{\prime \prime }-3 y^{\prime }-7 y = 4 \]

14096

\[ {}3 y^{\prime \prime }+5 y^{\prime }-2 y = 3 t^{2} \]

14132

\[ {}y^{\prime \prime }-2 y^{\prime }+y = x^{{3}/{2}} {\mathrm e}^{x} \]

14133

\[ {}y^{\prime \prime }+4 y = 2 \sec \left (2 x \right ) \]

14135

\[ {}y^{\prime \prime }+y = f \left (x \right ) \]

14159

\[ {}y^{\prime \prime }-2 k y^{\prime }+k^{2} y = {\mathrm e}^{x} \]

14254

\[ {}y^{\prime \prime }-7 y^{\prime }+12 y = x \]

14255

\[ {}s^{\prime \prime }-a^{2} s = t +1 \]

14256

\[ {}y^{\prime \prime }+y^{\prime }-2 y = 8 \sin \left (2 x \right ) \]

14257

\[ {}y^{\prime \prime }-y = 5 x +2 \]

14258

\[ {}y^{\prime \prime }-2 a y^{\prime }+a^{2} y = {\mathrm e}^{x} \]

14259

\[ {}y^{\prime \prime }+6 y^{\prime }+5 y = {\mathrm e}^{2 x} \]

14260

\[ {}y^{\prime \prime }+9 y = 6 \,{\mathrm e}^{3 x} \]

14261

\[ {}y^{\prime \prime }-3 y^{\prime } = 2-6 x \]

14262

\[ {}y^{\prime \prime }-2 y^{\prime }+3 y = {\mathrm e}^{-x} \cos \left (x \right ) \]

14263

\[ {}y^{\prime \prime }+4 y = 2 \sin \left (2 x \right ) \]

14268

\[ {}y^{\prime \prime }+n^{2} y = h \sin \left (r x \right ) \]

14269

\[ {}y^{\prime \prime }-7 y^{\prime }+6 y = \sin \left (x \right ) \]

14270

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14271

\[ {}y^{\prime \prime }+y = \frac {1}{\cos \left (2 x \right )^{{3}/{2}}} \]

14278

\[ {}y^{\prime \prime }+y = \sec \left (x \right ) \]

14281

\[ {}y^{\prime \prime }-4 y = {\mathrm e}^{2 x} \sin \left (2 x \right ) \]

14480

\[ {}3 y^{\prime \prime }-2 y^{\prime }+4 y = x \]

14493

\[ {}y^{\prime \prime }-4 y = 31 \]

14494

\[ {}y^{\prime \prime }+9 y = 27 x +18 \]

14524

\[ {}y^{\prime \prime }-9 y = 2 \sin \left (3 x \right ) \]

14525

\[ {}y^{\prime \prime }+9 y = 2 \sin \left (3 x \right ) \]

14526

\[ {}y^{\prime \prime }+y^{\prime }-2 y = x \,{\mathrm e}^{x}-3 x^{2} \]

14530

\[ {}y^{\prime \prime }-9 y = x +2 \]

14531

\[ {}y^{\prime \prime }+9 y = x +2 \]

14532

\[ {}y^{\prime \prime }-y^{\prime }+6 y = -2 \sin \left (3 x \right ) \]

14533

\[ {}y^{\prime \prime }-2 y^{\prime }+2 y = -x^{2}+1 \]

14537

\[ {}y^{\prime \prime }+9 y = 1 \]

14538

\[ {}y^{\prime \prime }+9 y = 18 \,{\mathrm e}^{3 x} \]

14540

\[ {}y^{\prime \prime }-y^{\prime }-2 y = x^{2} \]

14541

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \sin \left (x \right ) \]

14544

\[ {}y^{\prime \prime }-y^{\prime }-2 y = \left \{\begin {array}{cc} 1 & 2\le x <4 \\ 0 & \operatorname {otherwise} \end {array}\right . \]

14545

\[ {}y^{\prime \prime }-2 y^{\prime } = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ \left (x -1\right )^{2} & 1\le x \end {array}\right . \]

14546

\[ {}y^{\prime \prime }-2 y^{\prime }+y = \left \{\begin {array}{cc} 0 & 0\le x <1 \\ x^{2}-2 x +3 & 1\le x \end {array}\right . \]

14547

\[ {}y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 0 & 0\le x <\pi \\ -\sin \left (3 x \right ) & \pi \le x \end {array}\right . \]

14548

\[ {}y^{\prime \prime }-4 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]

14549

\[ {}y^{\prime \prime }-4 y^{\prime }+5 y = \left \{\begin {array}{cc} x & 0\le x <1 \\ 1 & 1\le x \end {array}\right . \]

14552

\[ {}y^{\prime \prime }+9 y = \delta \left (x -\pi \right )+\delta \left (x -3 \pi \right ) \]

14553

\[ {}y^{\prime \prime }-2 y^{\prime }+y = 2 \delta \left (x -1\right ) \]

14554

\[ {}y^{\prime \prime }-2 y^{\prime }+5 y = \cos \left (x \right )+2 \delta \left (x -\pi \right ) \]

14555

\[ {}y^{\prime \prime }+4 y = \cos \left (x \right ) \delta \left (x -\pi \right ) \]

14556

\[ {}y^{\prime \prime }+a^{2} y = \delta \left (x -\pi \right ) f \left (x \right ) \]

14897

\[ {}y^{\prime \prime }-y^{\prime }-6 y = {\mathrm e}^{4 t} \]

14898

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 \,{\mathrm e}^{-3 t} \]

14899

\[ {}y^{\prime \prime }-y^{\prime }-2 y = 5 \,{\mathrm e}^{3 t} \]

14900

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = {\mathrm e}^{-t} \]

14901

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

14902

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

14903

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = {\mathrm e}^{4 t} \]

14904

\[ {}y^{\prime \prime }+y^{\prime }-6 y = 4 \,{\mathrm e}^{-3 t} \]

14905

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-t} \]

14906

\[ {}y^{\prime \prime }+7 y^{\prime }+12 y = 3 \,{\mathrm e}^{-t} \]

14907

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = -3 \,{\mathrm e}^{-2 t} \]

14908

\[ {}y^{\prime \prime }+7 y^{\prime }+10 y = {\mathrm e}^{-2 t} \]

14909

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-\frac {t}{2}} \]

14910

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-2 t} \]

14911

\[ {}y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{-4 t} \]

14912

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-\frac {t}{2}} \]

14913

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-2 t} \]

14914

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = {\mathrm e}^{-4 t} \]

14915

\[ {}y^{\prime \prime }+2 y^{\prime }+y = {\mathrm e}^{-t} \]

14916

\[ {}y^{\prime \prime }-5 y^{\prime }+4 y = 5 \]

14917

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 2 \]

14918

\[ {}y^{\prime \prime }+2 y^{\prime }+10 y = 10 \]

14919

\[ {}y^{\prime \prime }+4 y^{\prime }+6 y = -8 \]

14920

\[ {}y^{\prime \prime }+9 y = {\mathrm e}^{-t} \]

14921

\[ {}y^{\prime \prime }+4 y = 2 \,{\mathrm e}^{-2 t} \]

14922

\[ {}y^{\prime \prime }+2 y = -3 \]

14923

\[ {}y^{\prime \prime }+4 y = {\mathrm e}^{t} \]

14924

\[ {}y^{\prime \prime }+9 y = 6 \]

14925

\[ {}y^{\prime \prime }+2 y = -{\mathrm e}^{t} \]

14926

\[ {}y^{\prime \prime }+4 y = -3 t^{2}+2 t +3 \]

14927

\[ {}y^{\prime \prime }+2 y^{\prime } = 3 t +2 \]

14928

\[ {}y^{\prime \prime }+4 y^{\prime } = 3 t +2 \]

14929

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = t^{2} \]

14930

\[ {}y^{\prime \prime }+4 y = t -\frac {1}{20} t^{2} \]

14931

\[ {}y^{\prime \prime }+5 y^{\prime }+6 y = 4+{\mathrm e}^{-t} \]

14932

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = {\mathrm e}^{-t}-4 \]

14933

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{-t} \]

14934

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = 2 t +{\mathrm e}^{t} \]

14935

\[ {}y^{\prime \prime }+4 y = t +{\mathrm e}^{-t} \]

14936

\[ {}y^{\prime \prime }+4 y = 6+t^{2}+{\mathrm e}^{t} \]

14937

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \cos \left (t \right ) \]

14938

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 5 \cos \left (t \right ) \]

14939

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = \sin \left (t \right ) \]

14940

\[ {}y^{\prime \prime }+3 y^{\prime }+2 y = 2 \sin \left (t \right ) \]

14941

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]

14942

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = -4 \cos \left (3 t \right ) \]

14943

\[ {}y^{\prime \prime }+4 y^{\prime }+13 y = 3 \cos \left (2 t \right ) \]

14944

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -\cos \left (5 t \right ) \]

14945

\[ {}y^{\prime \prime }+4 y^{\prime }+20 y = -3 \sin \left (2 t \right ) \]

14946

\[ {}y^{\prime \prime }+2 y^{\prime }+y = \cos \left (3 t \right ) \]

14947

\[ {}y^{\prime \prime }+6 y^{\prime }+8 y = \cos \left (t \right ) \]