4.20.15 Problems 1401 to 1500

Table 4.931: Second or higher order ODE with constant coefficients

#

ODE

Mathematica

Maple

Sympy

6720

\[ {} y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

6721

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

6722

\[ {} y^{\prime \prime }-3 y^{\prime }+2 y = \sin \left ({\mathrm e}^{-x}\right ) \]

6723

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

6724

\[ {} y^{\prime \prime }+4 y = 4 \sec \left (x \right )^{2} \]

6725

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = \frac {1}{1+{\mathrm e}^{-x}} \]

6726

\[ {} y^{\prime \prime }-y = {\mathrm e}^{-x} \sin \left ({\mathrm e}^{-x}\right )+\cos \left ({\mathrm e}^{-x}\right ) \]

6727

\[ {} y^{\prime \prime }-y = \frac {1}{\left (1+{\mathrm e}^{-x}\right )^{2}} \]

6728

\[ {} y^{\prime \prime }+2 y = {\mathrm e}^{x}+2 \]

6729

\[ {} y^{\prime \prime }-y = {\mathrm e}^{x} \sin \left (2 x \right ) \]

6730

\[ {} y^{\prime \prime }+2 y^{\prime }+2 y = x^{2}+\sin \left (x \right ) \]

6731

\[ {} y^{\prime \prime }-9 y = x +{\mathrm e}^{2 x}-\sin \left (2 x \right ) \]

6732

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }+2 y^{\prime } = x^{2}+4 x +8 \]

6733

\[ {} y^{\prime \prime }+y = -2 \sin \left (x \right )+4 x \cos \left (x \right ) \]

6734

\[ {} y^{\prime \prime \prime }-y^{\prime \prime }-4 y^{\prime }+4 y = 2 x^{2}-4 x -1+2 x^{2} {\mathrm e}^{2 x}+5 x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x} \]

6735

\[ {} y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{3 x}+6 \,{\mathrm e}^{x}-3 \,{\mathrm e}^{-2 x}+5 \]

6736

\[ {} y^{\prime \prime }-y = {\mathrm e}^{x} \]

6737

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = {\mathrm e}^{x}+x \,{\mathrm e}^{2 x} \]

6738

\[ {} y^{\prime \prime \prime \prime }-y = \sin \left (2 x \right ) \]

6739

\[ {} y^{\prime \prime \prime }+y = \cos \left (x \right ) \]

6740

\[ {} y^{\prime \prime }+4 y = \sin \left (2 x \right ) \]

6741

\[ {} y^{\prime \prime }+5 y = \cos \left (\sqrt {5}\, x \right ) \]

6742

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }+y^{\prime }+y = {\mathrm e}^{x}+{\mathrm e}^{-x}+\sin \left (x \right ) \]

6743

\[ {} y^{\prime \prime }-y = x^{2} \]

6744

\[ {} y^{\prime \prime }+2 y = x^{3}+x^{2}+{\mathrm e}^{-2 x}+\cos \left (3 x \right ) \]

6745

\[ {} y^{\prime \prime }-2 y^{\prime }-y = {\mathrm e}^{x} \cos \left (x \right ) \]

6746

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = \frac {{\mathrm e}^{2 x}}{x^{2}} \]

6747

\[ {} y^{\prime \prime }-y = x \,{\mathrm e}^{3 x} \]

6748

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = {\mathrm e}^{-2 x} \sec \left (x \right )^{2} \left (1+2 \tan \left (x \right )\right ) \]

6775

\[ {} y^{\prime \prime \prime }+y^{\prime \prime } = x^{2} \]

6888

\[ {} y^{\prime \prime }-6 y^{\prime }+13 y = 0 \]

6889

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

6898

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

6908

\[ {} y^{\prime \prime }-5 y^{\prime }+6 y = 0 \]

6909

\[ {} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0 \]

6917

\[ {} y^{\prime \prime }+4 y^{\prime }+6 y = 10 \]

6925

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (t \right ) \]

6927

\[ {} y^{\prime \prime } = f \left (x \right ) \]

6931

\[ {} y^{\prime \prime \prime \prime }-20 y^{\prime \prime \prime }+158 y^{\prime \prime }-580 y^{\prime }+841 y = 0 \]

6939

\[ {} x^{\prime \prime }+x = 0 \]

6940

\[ {} x^{\prime \prime }+x = 0 \]

6941

\[ {} x^{\prime \prime }+x = 0 \]

6942

\[ {} x^{\prime \prime }+x = 0 \]

6943

\[ {} y^{\prime \prime }-y = 0 \]

6944

\[ {} y^{\prime \prime }-y = 0 \]

6945

\[ {} y^{\prime \prime }-y = 0 \]

6946

\[ {} y^{\prime \prime }-y = 0 \]

6971

\[ {} y^{\prime \prime }+4 y = 0 \]

6972

\[ {} y^{\prime \prime }+4 y = 0 \]

6973

\[ {} y^{\prime \prime }+4 y = 0 \]

6974

\[ {} y^{\prime \prime }+4 y = 0 \]

6975

\[ {} y^{\prime \prime }+4 y = 0 \]

6976

\[ {} y^{\prime \prime }+4 y = 0 \]

6986

\[ {} y^{\prime \prime }+9 y = 18 \]

6988

\[ {} y^{\prime \prime } = y^{\prime } \]

6996

\[ {} y^{\prime \prime }+y = 2 \cos \left (x \right )-2 \sin \left (x \right ) \]

6997

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

7003

\[ {} y^{\prime \prime }+y = {\mathrm e}^{x^{2}} \]

7008

\[ {} y^{\prime \prime }+9 y = 5 \]

7010

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7011

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7012

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7013

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 6 x +4 \]

7349

\[ {} y^{\prime \prime }-y^{\prime }-6 y = 0 \]

7350

\[ {} y^{\prime \prime }+9 y = 10 \,{\mathrm e}^{-t} \]

7351

\[ {} y^{\prime \prime }-\frac {y}{4} = 0 \]

7352

\[ {} y^{\prime \prime }-6 y^{\prime }+5 y = 29 \cos \left (2 t \right ) \]

7353

\[ {} y^{\prime \prime }+7 y^{\prime }+12 y = 21 \,{\mathrm e}^{3 t} \]

7354

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7355

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 6 t -8 \]

7356

\[ {} y^{\prime \prime }+\frac {y}{25} = \frac {t^{2}}{50} \]

7357

\[ {} y^{\prime \prime }+3 y^{\prime }+\frac {9 y}{4} = 9 t^{3}+64 \]

7358

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7360

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 50 t -100 \]

7361

\[ {} y^{\prime \prime }+3 y^{\prime }-4 y = 6 \,{\mathrm e}^{2 t -3} \]

7362

\[ {} 9 y^{\prime \prime }-6 y^{\prime }+y = 0 \]

7363

\[ {} y^{\prime \prime }+6 y^{\prime }+8 y = {\mathrm e}^{-3 t}-{\mathrm e}^{-5 t} \]

7364

\[ {} y^{\prime \prime }+10 y^{\prime }+24 y = 144 t^{2} \]

7365

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 8 \sin \left (t \right ) & 0<t <\pi \\ 0 & \pi <t \end {array}\right . \]

7366

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 4 t & 0<t <1 \\ 8 & 1<t \end {array}\right . \]

7367

\[ {} y^{\prime \prime }+y^{\prime }-2 y = \left \{\begin {array}{cc} 3 \sin \left (t \right )-\cos \left (t \right ) & 0<t <2 \pi \\ 3 \sin \left (2 t \right )-\cos \left (2 t \right ) & 2 \pi <t \end {array}\right . \]

7368

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = \left \{\begin {array}{cc} 1 & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7369

\[ {} y^{\prime \prime }+y = \left \{\begin {array}{cc} t & 0<t <1 \\ 0 & 1<t \end {array}\right . \]

7370

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = \left \{\begin {array}{cc} 10 \sin \left (t \right ) & 0<t <2 \pi \\ 0 & 2 \pi <t \end {array}\right . \]

7371

\[ {} y^{\prime \prime }+4 y = \left \{\begin {array}{cc} 8 t^{2} & 0<t <5 \\ 0 & 5<t \end {array}\right . \]

7372

\[ {} y^{\prime \prime }+4 y = \delta \left (t -\pi \right ) \]

7373

\[ {} y^{\prime \prime }+16 y = 4 \delta \left (t -3 \pi \right ) \]

7374

\[ {} y^{\prime \prime }+y = \delta \left (t -\pi \right )-\delta \left (t -2 \pi \right ) \]

7375

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \delta \left (t -1\right ) \]

7376

\[ {} 4 y^{\prime \prime }+24 y^{\prime }+37 y = 17 \,{\mathrm e}^{-t}+\delta \left (t -\frac {1}{2}\right ) \]

7377

\[ {} y^{\prime \prime }+3 y^{\prime }+2 y = 10 \sin \left (t \right )+10 \delta \left (t -1\right ) \]

7378

\[ {} y^{\prime \prime }+4 y^{\prime }+5 y = \left (1-\operatorname {Heaviside}\left (t -10\right )\right ) {\mathrm e}^{t}-{\mathrm e}^{10} \delta \left (t -10\right ) \]

7379

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \delta \left (t -\frac {\pi }{2}\right )+\operatorname {Heaviside}\left (t -\pi \right ) \cos \left (t \right ) \]

7380

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = \operatorname {Heaviside}\left (t -1\right )+\delta \left (t -2\right ) \]

7381

\[ {} y^{\prime \prime }+2 y^{\prime }+5 y = 25 t -100 \delta \left (t -\pi \right ) \]

7478

\[ {} y^{\prime \prime }+2 y^{\prime }-y = 0 \]

7517

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 0 \]

7518

\[ {} s^{\prime \prime }+2 s^{\prime }+s = 0 \]

7519

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 0 \]

7520

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 3 x +1 \]