| # | ODE | Mathematica | Maple | Sympy |
| \[
{} x v^{\prime } = \frac {1-4 v^{2}}{3 v}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sec \left (y\right )^{2}}{x^{2}+1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 3 x^{2} \left (1+y^{2}\right )^{{3}/{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-x^{3} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +x y^{2}+{\mathrm e}^{x^{2}} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime }}{y}+y \,{\mathrm e}^{\cos \left (x \right )} \sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (1+y^{2}\right ) \tan \left (x \right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{3} \left (1-y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime }}{2} = \sqrt {1+y}\, \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime } = \frac {4 x^{2}-x -2}{\left (1+x \right ) \left (1+y\right )}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {y^{\prime }}{\theta } = \frac {y \sin \left (\theta \right )}{y^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2}+2 y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 t \cos \left (y\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 8 x^{3} {\mathrm e}^{-2 y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2} \left (1+y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {y}+y^{\prime } \left (1+x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = {\mathrm e}^{x^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{x^{2}}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {\sin \left (x \right )+1}\, \left (1+y^{2}\right )
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2 y-2 t y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{{1}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x -3\right ) \left (1+y\right )^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = y^{2}-3 y+2
\]
|
✗ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+\sin \left (x \right )-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+t x = {\mathrm e}^{x}
\]
|
✗ |
✗ |
✗ |
|
| \[
{} \left (t^{2}+1\right ) y^{\prime } = t y-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 t = {\mathrm e}^{t} y^{\prime }+y \ln \left (t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x x^{\prime }+x t^{2} = \sin \left (t \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} 3 r = r^{\prime }-\theta ^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y-{\mathrm e}^{3 x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y}{x}+2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime }+r \tan \left (\theta \right ) = \sec \left (\theta \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+2 y = \frac {1}{x^{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t +y+1-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = x^{2} {\mathrm e}^{-4 x}-4 y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y x^{\prime }+2 x = 5 y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime }+3 y+3 x^{2} = \frac {\sin \left (x \right )}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime }+x y-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \left (-x^{2}+1\right )-x^{2} y = \left (1+x \right ) \sqrt {-x^{2}+1}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-\frac {y}{x} = x \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+4 y-{\mathrm e}^{-x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{2} x^{\prime }+3 t x = t^{4} \ln \left (t \right )+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {3 y}{x}+2 = 3 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = 2 x \cos \left (x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = x \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \sqrt {1+\sin \left (x \right )^{2}} = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left ({\mathrm e}^{4 y}+2 x \right ) y^{\prime }-1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = \frac {x}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {3 y}{x} = x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \alpha -\beta \cos \left (\frac {\pi t}{12}\right )-k x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} u^{\prime } = \alpha \left (1-u\right )-\beta u
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y+x^{4} \cos \left (x \right )-x^{3} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{{10}/{3}}-2 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {-2 y-y^{2}}+\left (-x^{2}+2 x +3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{x y}+2 x +\left (x \,{\mathrm e}^{x y}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+\left (2 x y+\cos \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +y \cos \left (x y\right )+\left (x \cos \left (x y\right )-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \theta r^{\prime }+3 r-\theta -1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+3+\left (x^{2}-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x -2 y\right ) y^{\prime }+2 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x \right ) \cos \left (y\right )+2 x -\left (\sin \left (x \right ) \sin \left (y\right )+2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{t} \left (y-t \right )+\left (1+{\mathrm e}^{t}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \frac {t y^{\prime }}{y}+1+\ln \left (y\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (\theta \right ) r^{\prime }-r \sin \left (\theta \right )+{\mathrm e}^{\theta } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {1}{y}-\left (3 y-\frac {x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x +y^{2}-\cos \left (x +y\right )+\left (2 x y-\cos \left (x +y\right )-{\mathrm e}^{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +\frac {y}{1+x^{2} y^{2}}+\left (\frac {x}{1+x^{2} y^{2}}-2 y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \frac {2}{\sqrt {-x^{2}+1}}+y \cos \left (x y\right )+\left (x \cos \left (x y\right )-\frac {1}{y^{{1}/{3}}}\right ) y^{\prime } = 0
\]
|
✗ |
✓ |
✗ |
|
| \[
{} \frac {1}{x}+2 x y^{2}+\left (2 x^{2} y-\cos \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y \,{\mathrm e}^{x y}-\frac {1}{y}+\left (x \,{\mathrm e}^{x y}+\frac {x}{y^{2}}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{t} y+t \,{\mathrm e}^{t} y+\left (t \,{\mathrm e}^{t}+2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{t} x+1+\left ({\mathrm e}^{t}-1\right ) x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{2}+\left (\frac {1}{x}-\frac {y}{x}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \tan \left (y\right )-2+\left (x \sec \left (y\right )^{2}+\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+2 x y-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 x^{2} y+6 y^{2} x^{3}+4 x y^{2}+\left (2 x^{3}+3 x^{4} y+3 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +\frac {y}{x}+\left (x y-1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{3}+2 y^{2}+\left (3 x y^{2}+2 x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (x -2 y\right ) y^{\prime }+2 x +y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+2 x y-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} \sin \left (x \right )+4 y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{2}-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+\left (y^{2}-3 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 3 x^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{4}-x +y-x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{2}+2 y+4 x^{2}+\left (2 x y+x \right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{2}+2 x y-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{3}+1+\left (3 x^{2} y^{2}-\frac {1}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y^{2}-6 x y+\left (3 x y-4 x^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y+2 x y^{2}+\left (x +2 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3+y+x y+\left (3+x +x y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x +2 y+2 x^{3} y+4 x^{2} y^{2}+\left (2 x +x^{4}+2 x^{3} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 t x x^{\prime }+t^{2}-x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|