| # | ODE | Mathematica | Maple | Sympy |
| \[
{} \left (y-4 x -1\right )^{2}-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = y^{2} x^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t +x+2\right ) x^{\prime }+3 t -x-6 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t y^{\prime }-y = \sqrt {t y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y \,{\mathrm e}^{-2 x}+y^{3}-{\mathrm e}^{-2 x} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \cos \left (x +y\right ) y^{\prime } = \sin \left (x +y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{3}-x y^{2}+2 x^{2} y y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y+y^{2}-x^{2} y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x^{2}-y^{2}-\left (x y-\frac {x^{3}}{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+y^{2}-x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime } = \frac {x^{2}+t \sqrt {t^{2}+x^{2}}}{t x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {t \sec \left (\frac {y}{t}\right )+y}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x^{2}-y^{2}}{3 x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {y \left (1+\ln \left (y\right )-\ln \left (x \right )\right )}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sqrt {x +y}-1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x +y+2\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (x -y+5\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \sin \left (x -y\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = {\mathrm e}^{2 x} y^{3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {2 y}{x}-x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x -2} = 5 \left (x -2\right ) \sqrt {y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+t x^{3}+\frac {x}{t} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = \frac {{\mathrm e}^{x}}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} r^{\prime } = r^{2}+\frac {2 r}{t}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y^{3}+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x +y-1+\left (y-x -5\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -4 x -y-1+\left (x +y+3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x -y+\left (4 x +y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x -y+4+\left (x -2 y-2\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \frac {2 y}{x}+\cos \left (\frac {y}{x^{2}}\right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} [y^{\prime }\left (t \right ) = -4 x \left (t \right )-y \left (t \right ), x^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )]
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {3 x y}{2 x^{2}-y^{2}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = x^{3} \left (y-x \right )^{2}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {{\mathrm e}^{x +y}}{y-1}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = 32 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-\frac {2}{y^{3}}\right ) y^{\prime }+2 x y-3 x^{2} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {3 y}{x} = x^{2}-4 x +3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{3}-y^{\prime } \left (-x^{2}+1\right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t^{3} y^{2}+\frac {t^{4} y^{\prime }}{y^{6}} = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+\frac {2 y}{x} = 2 x^{2} y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}+y^{2}+3 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 1+\frac {1}{1+x^{2}+4 x y+y^{2}}+\left (\frac {1}{\sqrt {y}}+\frac {1}{1+x^{2}+2 x y+y^{2}}\right ) y^{\prime } = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} x^{\prime } = 1+\cos \left (t -x\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{3}+4 y \,{\mathrm e}^{x}+\left (2 \,{\mathrm e}^{x}+3 y^{2}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-\frac {y}{x} = x^{2} \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }-\frac {x}{t -1} = t^{2}+2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = 2-\sqrt {2 x -y+3}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y \tan \left (x \right )+\sin \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y+y^{\prime } = y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \left (2 x +y-1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2}-3 y^{2}+2 y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{x} = -\frac {4 x}{y^{2}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 x -1+\left (x +y-4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x -2 y-8+\left (x -3 y-6\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-x +\left (x +y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {\frac {y}{x}}+\cos \left (x \right )+\left (\sqrt {\frac {x}{y}}+\sin \left (y\right )\right ) y^{\prime } = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} y \left (x -y-2\right )+x \left (y-x +4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }+x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x -y-5+\left (x -y+1\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x -y-1}{x +y+5}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 x y^{3}-9 y^{2}+4 x y^{2}+\left (3 x^{2} y^{2}-6 x y+2 x^{2} y\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = \left (x +y+1\right )^{2}-\left (x +y-1\right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{3}-y+x y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {x}{y}+\frac {y}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} t +x+3+x^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-\frac {2 y}{x} = x^{2} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{2}+4 x^{2}-y y^{\prime } x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 \cos \left (y+2 x \right )-x^{2}+\left (\cos \left (y+2 x \right )+{\mathrm e}^{y}\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 x -y+\left (x +y-3\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sqrt {y}+\left (x^{2}+4\right ) y^{\prime } = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime }-\frac {2 y}{x} = \frac {1}{x y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-4 y = 2 x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {1}{t^{2}+1}-y
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y = x y^{\prime }+2 {y^{\prime }}^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x {y^{\prime }}^{3}-y {y^{\prime }}^{2}+2 = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime } = 2 y^{{2}/{3}}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime } = \frac {\sqrt {x^{2}+y^{2}}-x}{y}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+a y = Q \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+b y^{\prime }+k y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+4 y = 2 \cos \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 5 \sin \left (3 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+5 y = -50 \sin \left (5 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 6 \cos \left (2 t \right )+8 \sin \left (2 t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} m y^{\prime \prime }+b y^{\prime }+k y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{10}+25 y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+25 y = \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+7 y^{\prime }-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+8 y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-5 y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 y^{\prime \prime }+y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+z^{\prime }-z = 0
\]
|
✓ |
✓ |
✓ |
|