6.77 Problems 7601 to 7700

Table 6.153: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

7601

\[ {} 4 y^{\prime \prime }-4 y^{\prime }+y = 0 \]

7602

\[ {} y^{\prime \prime }-y^{\prime }-11 y = 0 \]

7603

\[ {} 4 w^{\prime \prime }+20 w^{\prime }+25 w = 0 \]

7604

\[ {} 3 y^{\prime \prime }+11 y^{\prime }-7 y = 0 \]

7605

\[ {} y^{\prime \prime }+2 y^{\prime }-8 y = 0 \]

7606

\[ {} y^{\prime \prime }+y^{\prime } = 0 \]

7607

\[ {} y^{\prime \prime }-4 y^{\prime }+3 y = 0 \]

7608

\[ {} y^{\prime \prime }-4 y^{\prime }-5 y = 0 \]

7609

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

7610

\[ {} z^{\prime \prime }-2 z^{\prime }-2 z = 0 \]

7611

\[ {} y^{\prime \prime }+2 y^{\prime }+y = 0 \]

7612

\[ {} y^{\prime \prime }-4 y^{\prime }+4 y = 0 \]

7613

\[ {} 3 y^{\prime }-7 y = 0 \]

7614

\[ {} 5 y^{\prime }+4 y = 0 \]

7615

\[ {} 3 z^{\prime }+11 z = 0 \]

7616

\[ {} 6 w^{\prime }-13 w = 0 \]

7617

\[ {} y^{\prime \prime }+y = 0 \]

7618

\[ {} y^{\prime \prime }+y = 0 \]

7619

\[ {} y^{\prime \prime }+y = 0 \]

7620

\[ {} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime }+4 y = 0 \]

7621

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }-y^{\prime }+6 y = 0 \]

7622

\[ {} z^{\prime \prime \prime }+2 z^{\prime \prime }-4 z^{\prime }-8 z = 0 \]

7623

\[ {} y^{\prime \prime \prime }-7 y^{\prime \prime }+7 y^{\prime }+15 y = 0 \]

7624

\[ {} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0 \]

7625

\[ {} y^{\prime \prime \prime }-y^{\prime } = 0 \]

7626

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0 \]

7627

\[ {} 3 y^{\prime \prime \prime }+18 y^{\prime \prime }+13 y^{\prime }-19 y = 0 \]

7628

\[ {} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+5 y = 0 \]

7629

\[ {} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0 \]

7630

\[ {} y^{\prime \prime }-y = 0 \]

7631

\[ {} y^{\prime \prime }-y = 0 \]

7632

\[ {} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0 \]

7633

\[ {} \left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0 \]

7634

\[ {} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0 \]

7635

\[ {} \left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+\sin \left (x \right ) y = 0 \]

7636

\[ {} \left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0 \]

7637

\[ {} \left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0 \]

7638

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0 \]

7639

\[ {} \sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

7640

\[ {} {\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0 \]

7641

\[ {} \sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0 \]

7642

\[ {} y^{\prime }+\left (x +2\right ) y = 0 \]

7643

\[ {} y^{\prime }-y = 0 \]

7644

\[ {} z^{\prime }-x^{2} z = 0 \]

7645

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0 \]

7646

\[ {} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0 \]

7647

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 0 \]

7648

\[ {} w^{\prime \prime }-x^{2} w^{\prime }+w = 0 \]

7649

\[ {} \left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0 \]

7650

\[ {} \left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0 \]

7651

\[ {} y^{\prime \prime }-x y^{\prime }-3 y = 0 \]

7652

\[ {} \left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0 \]

7653

\[ {} \left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0 \]

7654

\[ {} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0 \]

7655

\[ {} \left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0 \]

7656

\[ {} y^{\prime }+2 \left (x -1\right ) y = 0 \]

7657

\[ {} y^{\prime }-2 x y = 0 \]

7658

\[ {} \left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0 \]

7659

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0 \]

7660

\[ {} x^{2} y^{\prime \prime }-y^{\prime }+y = 0 \]

7661

\[ {} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0 \]

7662

\[ {} x^{\prime }+x \sin \left (t \right ) = 0 \]

7663

\[ {} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

7664

\[ {} \left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0 \]

7665

\[ {} y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0 \]

7666

\[ {} y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0 \]

7667

\[ {} y^{\prime }-x y = \sin \left (x \right ) \]

7668

\[ {} w^{\prime }+w x = {\mathrm e}^{x} \]

7669

\[ {} z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1 \]

7670

\[ {} y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2} \]

7671

\[ {} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \cos \left (x \right ) \]

7672

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = \cos \left (x \right ) \]

7673

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right ) \]

7674

\[ {} y^{\prime \prime }-\sin \left (x \right ) y = \cos \left (x \right ) \]

7675

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

7676

\[ {} x^{\prime \prime }-\omega ^{2} x = 0 \]

7677

\[ {} x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0 \]

7678

\[ {} x^{\prime \prime }+42 x^{\prime }+x = 0 \]

7679

\[ {} x^{\prime \prime \prime \prime }+x = 0 \]

7680

\[ {} x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0 \]

7681

\[ {} x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right ) \]

7682

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x} \]

7683

\[ {} y-2 y^{\prime }+y^{\prime \prime } = 2 \cos \left (x \right ) \]

7684

\[ {} y^{\prime \prime }+16 y = 16 \cos \left (4 x \right ) \]

7685

\[ {} -y+y^{\prime \prime } = \cosh \left (x \right ) \]

7686

\[ {} y^{\prime }-y = {\mathrm e}^{2 x} \]

7687

\[ {} x^{2} y^{\prime }+2 x y-x +1 = 0 \]

7688

\[ {} y^{\prime }+y = \left (1+x \right )^{2} \]

7689

\[ {} 2 x y+x^{2} y^{\prime } = \sinh \left (x \right ) \]

7690

\[ {} y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0 \]

7691

\[ {} y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0 \]

7692

\[ {} \left (x^{2}+1\right ) y^{\prime } = x y+1 \]

7693

\[ {} y^{\prime }+x y = x y^{2} \]

7694

\[ {} 3 x y^{\prime }+y+x^{2} y^{4} = 0 \]

7695

\[ {} x \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+\left (x -1\right ) y = 0 \]

7696

\[ {} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0 \]

7697

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0 \]

7698

\[ {} x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0 \]

7699

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

7700

\[ {} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0 \]