| # | ODE | Mathematica | Maple | Sympy |
| \[
{} 4 y^{\prime \prime }-4 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-11 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 w^{\prime \prime }+20 w^{\prime }+25 w = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime }+11 y^{\prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }-8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }-5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }-2 z^{\prime }-2 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime }-7 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 z^{\prime }+11 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 6 w^{\prime }-13 w = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime \prime }-6 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }-y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime \prime }+2 z^{\prime \prime }-4 z^{\prime }-8 z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-7 y^{\prime \prime }+7 y^{\prime }+15 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-2 y^{\prime \prime }-y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 y^{\prime \prime \prime }+18 y^{\prime \prime }+13 y^{\prime }-19 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-5 y^{\prime \prime }+5 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (5\right )}-3 y^{\prime \prime \prime \prime }-5 y^{\prime \prime \prime }+15 y^{\prime \prime }+4 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\operatorname {dif} \left (y, t\right )-6 y = 0
\]
|
✓ |
✗ |
✓ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }+3 y^{\prime }-x y = 0
\]
|
✓ |
✗ |
✗ |
|
| \[
{} \left (x^{2}-2\right ) y^{\prime \prime }+2 y^{\prime }+\sin \left (x \right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+x \right ) y^{\prime \prime }+3 y^{\prime }-6 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (t^{2}-t -2\right ) x^{\prime \prime }+\left (t +1\right ) x^{\prime }-\left (t -2\right ) x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-1\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }+\left (x^{2}-2 x +1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }+y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {\mathrm e}^{x} y^{\prime \prime }-\left (x^{2}-1\right ) y^{\prime }+2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \sin \left (x \right ) y^{\prime \prime }-y \ln \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\left (x +2\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime }-x^{2} z = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (x -1\right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime \prime }-x^{2} w^{\prime }+w = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (2 x -3\right ) y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (1+x \right ) y^{\prime \prime }-3 x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-x y^{\prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+x +1\right ) y^{\prime \prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-5 x +6\right ) y^{\prime \prime }-3 x y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{3}+1\right ) y^{\prime \prime }-x y^{\prime }+2 x^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+2 \left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-2 x y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-2 x \right ) y^{\prime \prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime }+x \sin \left (t \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y \,{\mathrm e}^{x} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime \prime }-{\mathrm e}^{x} y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+t y^{\prime }+{\mathrm e}^{t} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-{\mathrm e}^{2 x} y^{\prime }+y \cos \left (x \right ) = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-x y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} w^{\prime }+w x = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} z^{\prime \prime }+x z^{\prime }+z = x^{2}+2 x +1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 x y^{\prime }+3 y = x^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y-x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-x y^{\prime }+y^{\prime \prime } = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (-x^{2}+1\right ) y^{\prime \prime }-y^{\prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-\sin \left (x \right ) y = \cos \left (x \right )
\]
|
✓ |
✓ |
✗ |
|
| \[
{} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }-\omega ^{2} x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+42 x^{\prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime \prime }+x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime \prime }-3 x^{\prime \prime }-9 x^{\prime }-5 x = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{\prime \prime }+2 \gamma x^{\prime }+\omega _{0} x = F \cos \left (\omega t \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 16 \cos \left (4 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = \cosh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime }+2 x y-x +1 = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y = \left (1+x \right )^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y+x^{2} y^{\prime } = \sinh \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{1-x}+2 x -x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {y}{1-x}+x -x^{2} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}+1\right ) y^{\prime } = x y+1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+x y = x y^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 3 x y^{\prime }+y+x^{2} y^{4} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x \left (1+x \right )^{2} y^{\prime \prime }+y^{\prime } \left (-x^{2}+1\right )+\left (x -1\right ) y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} \left (1-x \right ) x y^{\prime \prime }+2 \left (1-2 x \right ) y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }+x y^{\prime }-9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+\frac {y^{\prime }}{2}+2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x^{2} y^{\prime \prime }-x y^{\prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 x y^{\prime \prime }-y^{\prime }+2 y = 0
\]
|
✓ |
✓ |
✓ |
|