6.170 Problems 16901 to 17000

Table 6.339: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

16901

\[ {} y^{\prime \prime }+4 y = \sin \left (t \right ) \]

16902

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 1 \]

16903

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = t \]

16904

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{3 t} \]

16905

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{-3 t} \]

16906

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{t} \]

16907

\[ {} y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

16908

\[ {} y^{\prime } = \operatorname {Heaviside}\left (t -3\right ) \]

16909

\[ {} y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

16910

\[ {} y^{\prime \prime } = \operatorname {Heaviside}\left (t -2\right ) \]

16911

\[ {} y^{\prime \prime }+9 y = \operatorname {Heaviside}\left (t -10\right ) \]

16912

\[ {} y^{\prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

16913

\[ {} y^{\prime \prime } = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

16914

\[ {} y^{\prime \prime }+9 y = \left \{\begin {array}{cc} 0 & t <1 \\ 1 & 1<t <3 \\ 0 & 3<t \end {array}\right . \]

16915

\[ {} y^{\prime } = 3 \delta \left (t -2\right ) \]

16916

\[ {} y^{\prime } = \delta \left (t -2\right )-\delta \left (t -4\right ) \]

16917

\[ {} y^{\prime \prime } = \delta \left (t -3\right ) \]

16918

\[ {} y^{\prime \prime } = \delta \left (t -1\right )-\delta \left (t -4\right ) \]

16919

\[ {} y^{\prime }+2 y = 4 \delta \left (t -1\right ) \]

16920

\[ {} y^{\prime \prime }+y = \delta \left (t \right )+\delta \left (t -\pi \right ) \]

16921

\[ {} y^{\prime \prime }+y = -2 \delta \left (t -\frac {\pi }{2}\right ) \]

16922

\[ {} 3 y+y^{\prime } = \delta \left (t -2\right ) \]

16923

\[ {} y^{\prime \prime }+3 y^{\prime } = \delta \left (t \right ) \]

16924

\[ {} y^{\prime \prime }+3 y^{\prime } = \delta \left (t -1\right ) \]

16925

\[ {} y^{\prime \prime }+16 y = \delta \left (t -2\right ) \]

16926

\[ {} y^{\prime \prime }-16 y = \delta \left (t -10\right ) \]

16927

\[ {} y^{\prime \prime }+y = \delta \left (t \right ) \]

16928

\[ {} y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t \right ) \]

16929

\[ {} y^{\prime \prime }+4 y^{\prime }-12 y = \delta \left (t -3\right ) \]

16930

\[ {} y^{\prime \prime }+6 y^{\prime }+9 y = \delta \left (t -4\right ) \]

16931

\[ {} y^{\prime \prime }-12 y^{\prime }+45 y = \delta \left (t \right ) \]

16932

\[ {} y^{\prime \prime \prime }+9 y^{\prime } = \delta \left (t -1\right ) \]

16933

\[ {} y^{\prime \prime \prime \prime }-16 y = \delta \left (t \right ) \]

16934

\[ {} y^{\prime }-2 y = 0 \]

16935

\[ {} y^{\prime }-2 x y = 0 \]

16936

\[ {} y^{\prime }+\frac {2 y}{2 x -1} = 0 \]

16937

\[ {} \left (x -3\right ) y^{\prime }-2 y = 0 \]

16938

\[ {} \left (x^{2}+1\right ) y^{\prime }-2 x y = 0 \]

16939

\[ {} y^{\prime }+\frac {y}{x -1} = 0 \]

16940

\[ {} y^{\prime }+\frac {y}{x -1} = 0 \]

16941

\[ {} \left (1-x \right ) y^{\prime }-2 y = 0 \]

16942

\[ {} \left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y = 0 \]

16943

\[ {} \left (-x^{3}+2\right ) y^{\prime }+3 x^{2} y = 0 \]

16944

\[ {} y^{\prime } \left (1+x \right )-x y = 0 \]

16945

\[ {} y^{\prime } \left (1+x \right )+\left (1-x \right ) y = 0 \]

16946

\[ {} -2 y+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

16947

\[ {} y+x y^{\prime }+y^{\prime \prime } = 0 \]

16948

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }+2 x y^{\prime } = 0 \]

16949

\[ {} y^{\prime \prime }-3 x^{2} y = 0 \]

16950

\[ {} \left (-x^{2}+4\right ) y^{\prime \prime }-5 x y^{\prime }-3 y = 0 \]

16951

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+4 y = 0 \]

16952

\[ {} 6 y-2 x y^{\prime }+y^{\prime \prime } = 0 \]

16953

\[ {} \left (x^{2}-6 x \right ) y^{\prime \prime }+4 \left (x -3\right ) y^{\prime }+2 y = 0 \]

16954

\[ {} y^{\prime \prime }+\left (x +2\right ) y^{\prime }+2 y = 0 \]

16955

\[ {} \left (x^{2}-2 x +2\right ) y^{\prime \prime }+\left (1-x \right ) y^{\prime }-3 y = 0 \]

16956

\[ {} y^{\prime \prime }-2 y^{\prime }-x y = 0 \]

16957

\[ {} y^{\prime \prime }-x y^{\prime }-2 x y = 0 \]

16958

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+\lambda y = 0 \]

16959

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda y = 0 \]

16960

\[ {} 4 y+y^{\prime \prime } = 0 \]

16961

\[ {} y^{\prime \prime }-x^{2} y = 0 \]

16962

\[ {} y^{\prime \prime }+y \,{\mathrm e}^{2 x} = 0 \]

16963

\[ {} \sin \left (x \right ) y^{\prime \prime }-y = 0 \]

16964

\[ {} y^{\prime \prime }+x y = \sin \left (x \right ) \]

16965

\[ {} y^{\prime \prime }-y^{\prime } \sin \left (x \right )-x y = 0 \]

16966

\[ {} y^{\prime \prime }-y^{2} = 0 \]

16967

\[ {} y^{\prime }+\cos \left (y\right ) = 0 \]

16968

\[ {} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16969

\[ {} y^{\prime }-y \tan \left (x \right ) = 0 \]

16970

\[ {} \sin \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16971

\[ {} \sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16972

\[ {} \sinh \left (x \right ) y^{\prime \prime }+x^{2} y^{\prime }-\sin \left (x \right ) y = 0 \]

16973

\[ {} {\mathrm e}^{3 x} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+\frac {2 y}{x^{2}+4} = 0 \]

16974

\[ {} y^{\prime \prime }+\frac {\left ({\mathrm e}^{x}+1\right ) y}{-{\mathrm e}^{x}+1} = 0 \]

16975

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+\left (x^{2}+x -6\right ) y = 0 \]

16976

\[ {} x y^{\prime \prime }+\left (-{\mathrm e}^{x}+1\right ) y = 0 \]

16977

\[ {} \sin \left (\pi \,x^{2}\right ) y^{\prime \prime }+x^{2} y = 0 \]

16978

\[ {} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16979

\[ {} y^{\prime }+y \,{\mathrm e}^{2 x} = 0 \]

16980

\[ {} y^{\prime }+y \cos \left (x \right ) = 0 \]

16981

\[ {} y^{\prime }+y \ln \left (x \right ) = 0 \]

16982

\[ {} y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

16983

\[ {} y^{\prime \prime }+3 x y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16984

\[ {} x y^{\prime \prime }-3 x y^{\prime }+\sin \left (x \right ) y = 0 \]

16985

\[ {} y^{\prime \prime }+y \ln \left (x \right ) = 0 \]

16986

\[ {} \sqrt {x}\, y^{\prime \prime }+y = 0 \]

16987

\[ {} y^{\prime \prime }+\left (6 x^{2}+2 x +1\right ) y^{\prime }+\left (2+12 x \right ) y = 0 \]

16988

\[ {} y^{\prime }-y \,{\mathrm e}^{x} = 0 \]

16989

\[ {} y^{\prime }+\sqrt {x^{2}+1}\, y = 0 \]

16990

\[ {} \cos \left (x \right ) y^{\prime }+y = 0 \]

16991

\[ {} y^{\prime }+\sqrt {2 x^{2}+1}\, y = 0 \]

16992

\[ {} y^{\prime \prime }-y \,{\mathrm e}^{x} = 0 \]

16993

\[ {} y^{\prime \prime }+y \cos \left (x \right ) = 0 \]

16994

\[ {} y^{\prime \prime }+y^{\prime } \sin \left (x \right )+y \cos \left (x \right ) = 0 \]

16995

\[ {} \sqrt {x}\, y^{\prime \prime }+y^{\prime }+x y = 0 \]

16996

\[ {} \left (x -3\right )^{2} y^{\prime \prime }-2 \left (x -3\right ) y^{\prime }+2 y = 0 \]

16997

\[ {} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }+y = 0 \]

16998

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-5 \left (x -1\right ) y^{\prime }+9 y = 0 \]

16999

\[ {} \left (x +2\right )^{2} y^{\prime \prime }+\left (x +2\right ) y^{\prime } = 0 \]

17000

\[ {} 3 \left (x -2\right )^{2} y^{\prime \prime }-4 \left (x -5\right ) y^{\prime }+2 y = 0 \]