6.171 Problems 17001 to 17100

Table 6.341: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

17001

\[ {} \left (x -5\right )^{2} y^{\prime \prime }+\left (x -5\right ) y^{\prime }+4 y = 0 \]

17002

\[ {} x^{2} y^{\prime \prime }+\frac {x y^{\prime }}{x -2}+\frac {2 y}{x +2} = 0 \]

17003

\[ {} x^{3} y^{\prime \prime }+x^{2} y^{\prime }+y = 0 \]

17004

\[ {} \left (-x^{4}+x^{3}\right ) y^{\prime \prime }+\left (3 x -1\right ) y^{\prime }+827 y = 0 \]

17005

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x -3}+\frac {y}{x -4} = 0 \]

17006

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{\left (x -3\right )^{2}}+\frac {y}{\left (x -4\right )^{2}} = 0 \]

17007

\[ {} y^{\prime \prime }+\left (\frac {1}{x}-\frac {1}{3}\right ) y^{\prime }+\left (\frac {1}{x}-\frac {1}{4}\right ) y = 0 \]

17008

\[ {} \left (4 x^{2}-1\right ) y^{\prime \prime }+\left (4-\frac {2}{x}\right ) y^{\prime }+\frac {\left (-x^{2}+1\right ) y}{x^{2}+1} = 0 \]

17009

\[ {} \left (x^{2}+4\right )^{2} y^{\prime \prime }+y = 0 \]

17010

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

17011

\[ {} 4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

17012

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

17013

\[ {} \left (-9 x^{4}+x^{2}\right ) y^{\prime \prime }-6 x y^{\prime }+10 y = 0 \]

17014

\[ {} x^{2} y^{\prime \prime }-x y^{\prime }+\frac {y}{1-x} = 0 \]

17015

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

17016

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+\left (1-\frac {1}{x^{2}}\right ) y = 0 \]

17017

\[ {} 2 x^{2} y^{\prime \prime }+\left (-2 x^{3}+5 x \right ) y^{\prime }+\left (-x^{2}+1\right ) y = 0 \]

17018

\[ {} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+\left (9+4 x \right ) y = 0 \]

17019

\[ {} \left (-3 x^{3}+3 x^{2}\right ) y^{\prime \prime }-\left (5 x^{2}+4 x \right ) y^{\prime }+2 y = 0 \]

17020

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

17021

\[ {} 4 x^{2} y^{\prime \prime }+8 x^{2} y^{\prime }+y = 0 \]

17022

\[ {} x^{2} y^{\prime \prime }+\left (-x^{4}+x \right ) y^{\prime }+3 x^{3} y = 0 \]

17023

\[ {} \left (9 x^{3}+9 x^{2}\right ) y^{\prime \prime }+\left (27 x^{2}+9 x \right ) y^{\prime }+\left (8 x -1\right ) y = 0 \]

17024

\[ {} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

17025

\[ {} y^{\prime \prime }+\frac {2 y^{\prime }}{x +2}+y = 0 \]

17026

\[ {} 4 y^{\prime \prime }+\frac {\left (4 x -3\right ) y}{\left (x -1\right )^{2}} = 0 \]

17027

\[ {} \left (x -3\right )^{2} y^{\prime \prime }+\left (x^{2}-3 x \right ) y^{\prime }-3 y = 0 \]

17028

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+\left (-x^{2}+2\right ) y = 0 \]

17029

\[ {} x^{2} y^{\prime \prime }-2 x^{2} y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

17030

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

17031

\[ {} x^{2} \left (-x^{2}+2\right ) y^{\prime \prime }+\left (4 x^{2}+5 x \right ) y^{\prime }+\left (x^{2}+1\right ) y = 0 \]

17032

\[ {} x^{2} y^{\prime \prime }-\left (2 x^{2}+5 x \right ) y^{\prime }+9 y = 0 \]

17033

\[ {} x^{2} \left (2 x +1\right ) y^{\prime \prime }+x y^{\prime }+\left (4 x^{3}-4\right ) y = 0 \]

17034

\[ {} 4 x^{2} y^{\prime \prime }+8 x y^{\prime }+\left (1-4 x \right ) y = 0 \]

17035

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }-\left (2 x +1\right ) y = 0 \]

17036

\[ {} x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

17037

\[ {} x y^{\prime \prime }+4 y^{\prime }+\frac {12 y}{\left (x +2\right )^{2}} = 0 \]

17038

\[ {} \left (x -3\right ) y^{\prime \prime }+\left (x -3\right ) y^{\prime }+y = 0 \]

17039

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-x y^{\prime }+3 y = 0 \]

17040

\[ {} 4 x^{2} y^{\prime \prime }+\left (1-4 x \right ) y = 0 \]

17041

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x}+y = 0 \]

17042

\[ {} x^{2} y^{\prime \prime }-\left (x^{2}+x \right ) y^{\prime }+4 x y = 0 \]

17043

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (4 x -4\right ) y = 0 \]

17044

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 1-2 x \left (t \right )] \]

17045

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-3 y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )-7 y \left (t \right )] \]

17046

\[ {} [t x^{\prime }\left (t \right )+2 x \left (t \right ) = 15 y \left (t \right ), t y^{\prime }\left (t \right ) = x \left (t \right )] \]

17047

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

17048

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

17049

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-y \left (t \right )] \]

17050

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 5 x \left (t \right )-2 y \left (t \right )] \]

17051

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )] \]

17052

\[ {} [x^{\prime }\left (t \right ) = 2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )] \]

17053

\[ {} [x^{\prime }\left (t \right ) = -2 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )] \]

17054

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )] \]

17055

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = -2 x \left (t \right )+3 y \left (t \right )] \]

17056

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )-17, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-13] \]

17057

\[ {} [x^{\prime }\left (t \right ) = 8 x \left (t \right )+2 y \left (t \right )+7 \,{\mathrm e}^{2 t}, y^{\prime }\left (t \right ) = 4 x \left (t \right )+y \left (t \right )-7 \,{\mathrm e}^{2 t}] \]

17058

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )-6 \,{\mathrm e}^{3 t}, y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+2 \,{\mathrm e}^{3 t}] \]

17059

\[ {} [x^{\prime }\left (t \right ) = -y \left (t \right ), y^{\prime }\left (t \right ) = 4 x \left (t \right )+24 t] \]

17060

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )-13 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )+19 \cos \left (4 t \right )-13 \sin \left (4 t \right )] \]

17061

\[ {} [x^{\prime }\left (t \right ) = 4 x \left (t \right )+3 y \left (t \right )+5 \operatorname {Heaviside}\left (t -2\right ), y^{\prime }\left (t \right ) = x \left (t \right )+6 y \left (t \right )+17 \operatorname {Heaviside}\left (t -2\right )] \]

17062

\[ {} [x^{\prime }\left (t \right ) = 5 x \left (t \right )+4 y \left (t \right ), y^{\prime }\left (t \right ) = 8 x \left (t \right )+y \left (t \right )] \]

17063

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right ), y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )] \]

17064

\[ {} [x^{\prime }\left (t \right ) = 2 x \left (t \right )-5 y \left (t \right )+4, y^{\prime }\left (t \right ) = 3 x \left (t \right )-7 y \left (t \right )+5] \]

17065

\[ {} [x^{\prime }\left (t \right ) = 3 x \left (t \right )+y \left (t \right ), y^{\prime }\left (t \right ) = 6 x \left (t \right )+2 y \left (t \right )] \]

17066

\[ {} [x^{\prime }\left (t \right ) = x \left (t \right ) y \left (t \right )-6 y \left (t \right ), y^{\prime }\left (t \right ) = x \left (t \right )-y \left (t \right )-5] \]

17067

\[ {} [x^{\prime }\left (t \right ) = -x \left (t \right )+2 y \left (t \right ), y^{\prime }\left (t \right ) = 2 x \left (t \right )-y \left (t \right )] \]

17068

\[ {} y^{\prime \prime }+y^{\prime }-2 y = x^{3} \]

17069

\[ {} y y^{\prime }+y^{4} = \sin \left (x \right ) \]

17070

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime }+5 y^{\prime }+y = {\mathrm e}^{x} \]

17071

\[ {} {y^{\prime }}^{2}+y = 0 \]

17072

\[ {} t^{2} y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

17073

\[ {} x {y^{\prime \prime }}^{2}+2 y = 2 x \]

17074

\[ {} x^{\prime \prime }+2 \sin \left (x\right ) = \sin \left (2 t \right ) \]

17075

\[ {} 2 x -1-y^{\prime } = 0 \]

17076

\[ {} 2 x -y-y y^{\prime } = 0 \]

17077

\[ {} 2 y+y^{\prime } = 0 \]

17078

\[ {} y^{\prime }+x y = 0 \]

17079

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

17080

\[ {} y^{\prime \prime }-y^{\prime }-12 y = 0 \]

17081

\[ {} y^{\prime \prime }+9 y^{\prime } = 0 \]

17082

\[ {} x^{\prime \prime }+2 x^{\prime }-10 x = 0 \]

17083

\[ {} x^{\prime \prime }+x = \cos \left (t \right ) t -\cos \left (t \right ) \]

17084

\[ {} y^{\prime \prime }-12 y^{\prime }+40 y = 0 \]

17085

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime } = 0 \]

17086

\[ {} y^{\prime \prime \prime }-2 y^{\prime \prime } = 0 \]

17087

\[ {} x^{2} y^{\prime \prime }-12 x y^{\prime }+42 y = 0 \]

17088

\[ {} t^{2} y^{\prime \prime }+3 t y^{\prime }+5 y = 0 \]

17089

\[ {} y^{\prime } = -\frac {x}{y} \]

17090

\[ {} 3 y \left (t^{2}+y\right )+t \left (t^{2}+6 y\right ) y^{\prime } = 0 \]

17091

\[ {} y^{\prime } = -\frac {2 y}{x}-3 \]

17092

\[ {} \cos \left (t \right ) y+\left (2 y+\sin \left (t \right )\right ) y^{\prime } = 0 \]

17093

\[ {} \frac {y}{x}+\cos \left (y\right )+\left (\ln \left (x \right )-x \sin \left (y\right )\right ) y^{\prime } = 0 \]

17094

\[ {} y^{\prime } = \left (x^{2}-1\right ) \left (x^{3}-3 x \right )^{3} \]

17095

\[ {} y^{\prime } = x \sin \left (x^{2}\right ) \]

17096

\[ {} y^{\prime } = \frac {x}{\sqrt {x^{2}-16}} \]

17097

\[ {} y^{\prime } = \frac {1}{x \ln \left (x \right )} \]

17098

\[ {} y^{\prime } = x \ln \left (x \right ) \]

17099

\[ {} y^{\prime } = x \,{\mathrm e}^{-x} \]

17100

\[ {} y^{\prime } = \frac {-2 x -10}{\left (x +2\right ) \left (x -4\right )} \]