6.216 Problems 21501 to 21600

Table 6.431: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

21501

\[ {} y^{2}-x^{2}-2 y y^{\prime } x = 0 \]

21502

\[ {} y^{\prime } = \frac {y^{3}-2 x^{3}}{x y^{2}} \]

21503

\[ {} y^{\prime } = \frac {2 y^{4}+x^{4}}{x y^{3}} \]

21504

\[ {} y^{\prime } = \sqrt {-\frac {y^{2}}{x^{2}}+1}+\frac {y}{x} \]

21505

\[ {} 2 y y^{\prime } x = -x^{2}+y^{2} \]

21506

\[ {} x +y-\left (x -y\right ) y^{\prime } = 0 \]

21507

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

21508

\[ {} y^{\prime } = \frac {2 y^{4}+x^{4}}{x y^{3}} \]

21509

\[ {} x^{2}-3 y^{2}+2 y y^{\prime } x = 0 \]

21510

\[ {} y y^{\prime } x +x^{2}+y^{2} = 0 \]

21511

\[ {} x y^{\prime }-y = \sqrt {x^{2}+y^{2}} \]

21512

\[ {} y^{\prime } = \frac {2 x y}{x^{2}-y^{2}} \]

21513

\[ {} y+\sqrt {x^{2}+y^{2}}-x y^{\prime } = 0 \]

21514

\[ {} y^{\prime } = \frac {x^{2}+y^{2}}{x y} \]

21515

\[ {} y-x y^{2}+x y^{\prime } = 0 \]

21516

\[ {} y^{\prime }+\tan \left (\theta \right ) y = \cos \left (\theta \right ) \]

21517

\[ {} y^{\prime }+2 x y = 0 \]

21518

\[ {} 1+3 x \sin \left (y\right )-x^{2} \cos \left (y\right ) y^{\prime } = 0 \]

21519

\[ {} \left (2+3 x -x y\right ) y^{\prime }+y = 0 \]

21520

\[ {} \left (x^{2}+1\right ) y^{\prime }+\left (-x^{2}+1\right ) y = x \,{\mathrm e}^{-x} \]

21521

\[ {} x^{\prime }-x \tan \left (t \right ) = \sin \left (t \right ) \]

21522

\[ {} y^{\prime } = 2 x y-x \]

21523

\[ {} y^{\prime }+\left (b x +a \right ) y = f \left (x \right ) \]

21524

\[ {} 2 y+y^{\prime } = 1 \]

21525

\[ {} 2 y-8 x^{2}+x y^{\prime } = 0 \]

21526

\[ {} y^{\prime }-3 y = 6 \]

21527

\[ {} y-x y^{\prime } = 0 \]

21528

\[ {} x y^{\prime }-y+y^{2} = 0 \]

21529

\[ {} y^{\prime }+\frac {y \left (x +y\right )}{x +2 y-1} = 0 \]

21530

\[ {} y^{\prime }+\frac {y}{x^{2} y^{2}+x} = \frac {x y^{2}}{x^{2} y^{2}+x} \]

21531

\[ {} y^{2}+y y^{\prime } x = 0 \]

21532

\[ {} \ln \left (y\right )+\frac {y^{\prime }}{y} = 0 \]

21533

\[ {} {\mathrm e}^{x}-\sin \left (y\right )+\cos \left (y\right ) y^{\prime } = 0 \]

21534

\[ {} 2 x^{2}+y+\left (x^{2} y-x \right ) y^{\prime } = 0 \]

21535

\[ {} 4 x y+3 y^{2}-x +x \left (2 y+x \right ) y^{\prime } = 0 \]

21536

\[ {} y \left (x +y+1\right )+x \left (x +3 y+2\right ) y^{\prime } = 0 \]

21537

\[ {} y^{\prime } = \frac {3 y x^{2}}{x^{3}+2 y^{4}} \]

21538

\[ {} y^{\prime } = \frac {-x y+\ln \left (x^{2}\right )}{x^{2}+x \,{\mathrm e}^{y}} \]

21539

\[ {} 3 x^{2} y+\left (y^{4}-x^{3}\right ) y^{\prime } = 0 \]

21540

\[ {} y+\left (x +y^{2} x^{3}\right ) y^{\prime } = 0 \]

21541

\[ {} \left (x^{3}-y\right ) y-x \left (x^{3}+y\right ) y^{\prime } = 0 \]

21542

\[ {} \frac {y^{2}-x y}{x y^{2}}+\frac {x y^{\prime }}{y^{2}} = 0 \]

21543

\[ {} \frac {y^{\prime }}{x}-\frac {y}{x^{2}} = 0 \]

21544

\[ {} y^{\prime } = \frac {x -2 y}{2 x -y} \]

21545

\[ {} y^{\prime } \left (x +\frac {x^{2}}{y}\right ) = y \]

21546

\[ {} 2 x -y+\left (-x +2 y\right ) y^{\prime } = 0 \]

21547

\[ {} 2 y+y^{\prime } = 0 \]

21548

\[ {} y^{\prime }+q \left (x \right ) y = 0 \]

21549

\[ {} 2 y-1+\left (3 x -y\right ) y^{\prime } = 0 \]

21550

\[ {} 2 y+y^{\prime } = 1 \]

21551

\[ {} y^{\prime } = y+{\mathrm e}^{x} \]

21552

\[ {} y^{\prime }+\frac {4 y}{x} = x^{4} \]

21553

\[ {} y^{\prime }+y = x \]

21554

\[ {} y^{\prime }+\frac {y}{x} = 3 x \]

21555

\[ {} \left (x^{2}+1\right ) y^{\prime }+4 x y = x \]

21556

\[ {} y^{\prime }+\frac {\left (2 x +1\right ) y}{x} = {\mathrm e}^{-2 x} \]

21557

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

21558

\[ {} y^{\prime }-2 x y = x \]

21559

\[ {} y^{\prime }-\frac {y}{x} = x \]

21560

\[ {} \cos \left (x \right ) y^{\prime }+\sin \left (x \right ) y = 1 \]

21561

\[ {} y^{\prime } = \frac {x^{4}+2 y}{x} \]

21562

\[ {} y^{\prime } = \frac {2 x y}{-x^{2}+y^{2}} \]

21563

\[ {} y^{\prime }-5 y = 0 \]

21564

\[ {} y^{\prime }+y = \sin \left (x \right ) \]

21565

\[ {} y^{2}+\left (3 x y-1\right ) y^{\prime } = 0 \]

21566

\[ {} y^{\prime }+p \left (x \right ) y = q \left (x \right ) \]

21567

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21568

\[ {} y^{\prime } = \frac {x^{2} y^{2}+2 y}{x} \]

21569

\[ {} 6 y^{2}-x \left (2 x^{3}+y\right ) y^{\prime } = 0 \]

21570

\[ {} y^{\prime } = \frac {1}{x^{2} y^{3}+x y} \]

21571

\[ {} y^{\prime }-\frac {3 y}{x} = x^{4} y^{{1}/{3}} \]

21572

\[ {} y^{\prime }+y = x y^{3} \]

21573

\[ {} y \left (6 y^{2}-x -1\right )+2 x y^{\prime } = 0 \]

21574

\[ {} y^{\prime }+x y = x y^{2} \]

21575

\[ {} x u^{\prime \prime }-\left (x^{2} {\mathrm e}^{x}+1\right ) u^{\prime }-x^{2} {\mathrm e}^{x} u = 0 \]

21576

\[ {} u^{\prime \prime }-\left (1+x \right ) u^{\prime }+\left (x -1\right ) u = 0 \]

21577

\[ {} y^{\prime } = -\frac {x +2}{x \left (1+x \right )^{2}}-\frac {\left (-x^{2}+x +2\right ) y}{x \left (1+x \right )}+\left (1+x \right ) y^{2} \]

21578

\[ {} y^{\prime } = -\frac {x +2}{x \left (1+x \right )^{2}}-\frac {\left (-x^{2}+x +2\right ) y}{x \left (1+x \right )}+\left (1+x \right ) y^{2} \]

21579

\[ {} y^{\prime } = 1-y+y^{2} {\mathrm e}^{2 x} \]

21580

\[ {} y^{\prime } = {\mathrm e}^{2 x}+\left (2+\frac {5 \,{\mathrm e}^{x}}{2}\right ) y+y^{2} \]

21581

\[ {} y^{\prime } = -x^{2}-x -1-\left (2 x +1\right ) y-y^{2} \]

21582

\[ {} y^{\prime } = 1+x +x^{2} \cos \left (x \right )-\left (1+4 x \cos \left (x \right )\right ) y+2 y^{2} \cos \left (x \right ) \]

21583

\[ {} y^{\prime } = -2+3 y-y^{2} \]

21584

\[ {} \left (x y^{\prime }-y\right )^{2}-{y^{\prime }}^{2}-1 = 0 \]

21585

\[ {} {y^{\prime }}^{2} \left (x^{2}-1\right )-2 y y^{\prime } x +y^{2}-1 = 0 \]

21586

\[ {} y = x y^{\prime }+{y^{\prime }}^{3} \]

21587

\[ {} \left (x^{2}-2 x \right ) \left (1+{y^{\prime }}^{2}\right )+1 = 0 \]

21588

\[ {} 2 y^{\prime }+y-2 y^{\prime } \ln \left (y^{\prime }\right ) = 0 \]

21589

\[ {} \frac {\ln \left (1+{y^{\prime }}^{2}\right )}{2}-\ln \left (y^{\prime }\right )-x +2 = 0 \]

21590

\[ {} u^{\prime \prime }+\left (\tan \left (x \right )-2 \cos \left (x \right )\right ) u^{\prime } = 0 \]

21591

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

21592

\[ {} 2 y-y^{\prime }-2 y^{\prime \prime }+y^{\prime \prime \prime } = 0 \]

21593

\[ {} -y+y^{\prime \prime } = 0 \]

21594

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x^{2} \]

21595

\[ {} y^{\prime \prime }+b y^{\prime }+c y = f \left (x \right ) \]

21596

\[ {} x^{\prime \prime }-4 x = 0 \]

21597

\[ {} y^{\prime \prime }-5 y = 0 \]

21598

\[ {} y^{\prime \prime }-y^{\prime }-2 y = 0 \]

21599

\[ {} y^{\prime \prime }+4 y^{\prime }+4 y = 0 \]

21600

\[ {} x^{\prime \prime } = 0 \]