6.217 Problems 21601 to 21700

Table 6.433: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

21601

\[ {} y+2 y^{\prime }+y^{\prime \prime } = 0 \]

21602

\[ {} y^{\prime \prime }+2 y^{\prime }+4 y = 0 \]

21603

\[ {} y^{\prime \prime }-2 y^{\prime }-y = 0 \]

21604

\[ {} y^{\prime \prime }+y = 0 \]

21605

\[ {} 4 y+y^{\prime \prime } = 0 \]

21606

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 0 \]

21607

\[ {} 5 y+4 y^{\prime }+y^{\prime \prime } = 0 \]

21608

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 0 \]

21609

\[ {} y^{\prime \prime }-2 y^{\prime }-2 y = 0 \]

21610

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = 0 \]

21611

\[ {} y^{\prime \prime }-2 y^{\prime }+10 y = 0 \]

21612

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 0 \]

21613

\[ {} y^{\prime \prime }+16 y = 0 \]

21614

\[ {} y^{\prime \prime }-6 y^{\prime }+25 y = 0 \]

21615

\[ {} y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25} = 0 \]

21616

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0 \]

21617

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

21618

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0 \]

21619

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }-3 y^{\prime }+18 y = 0 \]

21620

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0 \]

21621

\[ {} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }-3 y = 0 \]

21622

\[ {} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0 \]

21623

\[ {} y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = 0 \]

21624

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }+16 y = 0 \]

21625

\[ {} y^{\prime }-y = x \]

21626

\[ {} y^{\prime }-y = 3 x^{2}+x \]

21627

\[ {} y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1 \]

21628

\[ {} y^{\prime }-5 y = x^{3} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x} \]

21629

\[ {} y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right ) \]

21630

\[ {} y^{\prime \prime }-y^{\prime }-2 y = \sin \left (x \right ) \]

21631

\[ {} y^{\prime \prime } = 9 x^{2}+2 x -1 \]

21632

\[ {} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x} \]

21633

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}+2 x \]

21634

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = x^{3}+3 \]

21635

\[ {} y^{\prime \prime }+y^{\prime }-6 y = 2 x^{3}+5 x^{2}-7 x +2 \]

21636

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

21637

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

21638

\[ {} 4 y+y^{\prime \prime } = \sin \left (x \right )+\sin \left (2 x \right ) \]

21639

\[ {} y^{\prime \prime }-4 y^{\prime }+5 y = 2 \cos \left (x \right ) \]

21640

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = 3 \sin \left (x +\frac {\pi }{4}\right ) \]

21641

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x} \]

21642

\[ {} 5 y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \sin \left (x \right ) \]

21643

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{x} \]

21644

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x} \]

21645

\[ {} y^{\prime \prime }+y^{\prime }+8 y = \left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right ) \]

21646

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 \sin \left (x \right ) \]

21647

\[ {} y^{\prime \prime }+y^{\prime }-2 y = 2 x -40 \cos \left (2 x \right ) \]

21648

\[ {} y^{\prime \prime }-2 y^{\prime }-3 y = 2 \,{\mathrm e}^{x}-10 \sin \left (x \right ) \]

21649

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 3 \,{\mathrm e}^{x} \]

21650

\[ {} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 4 \sin \left (2 x \right ) \]

21651

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x} \]

21652

\[ {} y^{\prime \prime \prime }-y^{\prime } = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x} \]

21653

\[ {} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right ) \]

21654

\[ {} y^{\prime }+\frac {4 y}{x} = x^{4} \]

21655

\[ {} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}+2 x \]

21656

\[ {} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{1+{\mathrm e}^{-x}} \]

21657

\[ {} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x} \]

21658

\[ {} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{x} \]

21659

\[ {} -y+y^{\prime \prime } = {\mathrm e}^{x} \]

21660

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right ) \]

21661

\[ {} 4 y+y^{\prime \prime } = \sec \left (2 x \right ) \]

21662

\[ {} y^{\prime \prime }+y = \csc \left (x \right ) \]

21663

\[ {} y^{\prime \prime }+y = \sec \left (x \right ) \]

21664

\[ {} y^{\prime \prime }+y = \tan \left (x \right ) \]

21665

\[ {} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right ) \]

21666

\[ {} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x} \]

21667

\[ {} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right ) \]

21668

\[ {} y^{\prime \prime \prime \prime } = 5 x \]

21669

\[ {} x y^{\prime \prime }+y^{\prime }-\frac {4 y}{x} = x^{3}+x \]

21670

\[ {} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 6 \left (x^{2}+1\right )^{2} \]

21671

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{3} \sin \left (x \right ) \]

21672

\[ {} \left (x^{2}-3 x +1\right ) y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }+\left (2 x -3\right ) y = x \left (x^{2}-3 x +1\right )^{2} \]

21673

\[ {} x y^{\prime \prime }-\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x} = \left (1-x \right )^{2} \]

21674

\[ {} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right ) \]

21675

\[ {} x y^{\prime \prime }-y^{\prime } = 3 x^{2} \]

21676

\[ {} y y^{\prime \prime } = 1+{y^{\prime }}^{2} \]

21677

\[ {} {y^{\prime }}^{2}-4 y = 0 \]

21678

\[ {} y-\frac {x y^{\prime }}{2}-\frac {x}{2 y^{\prime }} = 0 \]

21679

\[ {} -y+y^{\prime \prime } = 0 \]

21680

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{x} = 2 \]

21681

\[ {} y y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

21682

\[ {} y^{\prime \prime }+y = 0 \]

21683

\[ {} y^{\prime \prime } = \cos \left (2 x \right ) \]

21684

\[ {} y^{\prime \prime }+k^{2} y = 0 \]

21685

\[ {} y^{\prime \prime }-2 s y^{\prime }-2 y = 0 \]

21686

\[ {} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0 \]

21687

\[ {} 2 y^{\prime \prime }+5 y^{\prime }-12 y = 0 \]

21688

\[ {} -y+y^{\prime \prime } = 2 x +{\mathrm e}^{2 x} \]

21689

\[ {} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+54 y^{\prime \prime }+108 y^{\prime }+81 y = 0 \]

21690

\[ {} y^{\left (6\right )}+8 y^{\prime \prime \prime } = a \,{\mathrm e}^{x} \]

21691

\[ {} y^{\prime \prime }-2 y^{\prime }+5 y = 16 x^{3} {\mathrm e}^{3 x} \]

21692

\[ {} y^{\prime \prime \prime }-y^{\prime } = a \sin \left (b x \right ) \]

21693

\[ {} y-2 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}+7 x -2 \]

21694

\[ {} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 96 \,{\mathrm e}^{-4 x} \]

21695

\[ {} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = f \left (x \right ) \]

21696

\[ {} y^{\prime \prime }+y = {\mathrm e}^{2 x} \]

21697

\[ {} y^{\prime \prime }+y = \sin \left (x \right ) \]

21698

\[ {} y^{\prime \prime \prime }+y^{\prime }+y = \sin \left (3 x \right ) \]

21699

\[ {} y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = {\mathrm e}^{3 x} \]

21700

\[ {} y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (x \right ) \]