| # | ODE | Mathematica | Maple | Sympy |
| \[
{} y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+2 y^{\prime }+4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+4 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+9 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+10 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-6 y^{\prime }+25 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-\frac {6 y^{\prime }}{5}+\frac {9 y}{25} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }-3 y^{\prime }+18 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-2 y^{\prime \prime }-3 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y+2 y^{\prime \prime }+y^{\prime \prime \prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-7 y^{\prime \prime \prime }+18 y^{\prime \prime }-20 y^{\prime }+8 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+24 y^{\prime \prime }+32 y^{\prime }+16 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-y = 3 x^{2}+x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = 3 \,{\mathrm e}^{x}-2 x +1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = x^{3} {\mathrm e}^{x}-x \,{\mathrm e}^{5 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }-5 y = \left (x -1\right ) \sin \left (x \right )+\left (1+x \right ) \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = 9 x^{2}+2 x -1
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = x^{3}+3
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-6 y = 2 x^{3}+5 x^{2}-7 x +2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \sin \left (x \right )+\sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-4 y^{\prime }+5 y = 2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = 3 \sin \left (x +\frac {\pi }{4}\right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 x^{2}+{\mathrm e}^{x}+2 x \,{\mathrm e}^{x}+4 \,{\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 5 y+2 y^{\prime }+y^{\prime \prime } = {\mathrm e}^{-x} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \left (x^{2}-1\right ) {\mathrm e}^{2 x}+\left (3 x +4\right ) {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }+8 y = \left (10 x^{2}+21 x +9\right ) \sin \left (3 x \right )+x \cos \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = 2 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y^{\prime }-2 y = 2 x -40 \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }-3 y = 2 \,{\mathrm e}^{x}-10 \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 3 \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-4 y^{\prime \prime }+y^{\prime }+6 y = 4 \sin \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = 2 x \,{\mathrm e}^{-x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = 3 \,{\mathrm e}^{2 x}+4 \,{\mathrm e}^{-x}
\]
|
✗ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }-y^{\prime \prime } = 3 x^{2}+4 \sin \left (x \right )-2 \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+\frac {4 y}{x} = x^{4}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+5 y^{\prime }+6 y = x^{2}+2 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y-3 y^{\prime }+y^{\prime \prime } = \frac {1}{1+{\mathrm e}^{-x}}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-y^{\prime }-2 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = \frac {{\mathrm e}^{x}}{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right ) \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 4 y+y^{\prime \prime } = \sec \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \csc \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \tan \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} a_{0} \left (x \right ) y^{\prime \prime }+a_{1} \left (x \right ) y^{\prime }+a_{2} \left (x \right ) y = f \left (x \right )
\]
|
✗ |
✗ |
✗ |
|
| \[
{} y^{\prime \prime \prime }-6 y^{\prime \prime }+11 y^{\prime }-6 y = {\mathrm e}^{x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime }+y^{\prime \prime \prime } = \sec \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime } = 5 x
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }+y^{\prime }-\frac {4 y}{x} = x^{3}+x
\]
|
✓ |
✓ |
✗ |
|
| \[
{} 2 y-2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 6 \left (x^{2}+1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = x^{3} \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} \left (x^{2}-3 x +1\right ) y^{\prime \prime }-\left (x^{2}-x -2\right ) y^{\prime }+\left (2 x -3\right ) y = x \left (x^{2}-3 x +1\right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x y^{\prime \prime }-\frac {\left (1-2 x \right ) y^{\prime }}{1-x}+\frac {\left (x^{2}-3 x +1\right ) y}{1-x} = \left (1-x \right )^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} x^{3} y^{\prime \prime \prime }-4 x^{2} y^{\prime \prime }+8 x y^{\prime }-8 y = 4 \ln \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} x y^{\prime \prime }-y^{\prime } = 3 x^{2}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime } = 1+{y^{\prime }}^{2}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} {y^{\prime }}^{2}-4 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-\frac {x y^{\prime }}{2}-\frac {x}{2 y^{\prime }} = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+\frac {y^{\prime }}{x} = 2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y y^{\prime \prime }+{y^{\prime }}^{2} = 1
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }+y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime } = \cos \left (2 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+k^{2} y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 s y^{\prime }-2 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-3 y^{\prime \prime }+3 y^{\prime }-y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} 2 y^{\prime \prime }+5 y^{\prime }-12 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} -y+y^{\prime \prime } = 2 x +{\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+12 y^{\prime \prime \prime }+54 y^{\prime \prime }+108 y^{\prime }+81 y = 0
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\left (6\right )}+8 y^{\prime \prime \prime } = a \,{\mathrm e}^{x}
\]
|
✓ |
✓ |
✗ |
|
| \[
{} y^{\prime \prime }-2 y^{\prime }+5 y = 16 x^{3} {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-y^{\prime } = a \sin \left (b x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y-2 y^{\prime }+y^{\prime \prime } = x \,{\mathrm e}^{x}+7 x -2
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime \prime }+8 y^{\prime \prime \prime }+16 y^{\prime \prime } = 96 \,{\mathrm e}^{-4 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }-2 a y^{\prime }+\left (a^{2}+b^{2}\right ) y = f \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = {\mathrm e}^{2 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = \sin \left (x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }+y^{\prime }+y = \sin \left (3 x \right )
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime \prime }-5 y^{\prime \prime }+3 y^{\prime }+9 y = {\mathrm e}^{3 x}
\]
|
✓ |
✓ |
✓ |
|
| \[
{} y^{\prime \prime }+y = x \,{\mathrm e}^{x} \cos \left (x \right )
\]
|
✓ |
✓ |
✓ |
|