6.218 Problems 21701 to 21800

Table 6.435: Main lookup table sequentially arranged

#

ODE

Mathematica

Maple

Sympy

21701

\[ {} y^{\prime \prime }+4 y^{\prime }+3 y = {\mathrm e}^{2 x} \]

21702

\[ {} -y+y^{\prime \prime } = x^{2}-x +1 \]

21703

\[ {} 4 y+4 y^{\prime }+y^{\prime \prime }+y^{\prime \prime \prime } = \cos \left (2 x \right ) \]

21704

\[ {} y^{\prime \prime }-6 y^{\prime }+9 y = {\mathrm e}^{2 x} \left (1+x \right ) \]

21705

\[ {} y^{\prime \prime \prime \prime }-y = \cos \left (2 x \right ) \]

21706

\[ {} y^{\left (5\right )}+y^{\prime \prime } = x^{5}-3 x^{2} \]

21707

\[ {} y^{\prime \prime }+y^{\prime }-12 y = x^{2} {\mathrm e}^{x} \]

21708

\[ {} [2 x^{\prime }\left (t \right )-3 x \left (t \right )-2 y^{\prime }\left (t \right ) = t, 2 x^{\prime }\left (t \right )+3 x \left (t \right )+2 y^{\prime }\left (t \right )+8 y \left (t \right ) = 2] \]

21709

\[ {} y^{\prime } = \frac {x +y+1}{x +2 y+3} \]

21710

\[ {} y^{\prime } = \frac {x +y+1}{x +y+2} \]

21711

\[ {} x +2 y+3+\left (2 x +4 y-1\right ) y^{\prime } = 0 \]

21712

\[ {} y^{\prime } = \frac {y+2 x}{y} \]

21713

\[ {} 2 x +y-3+\left (x +y-1\right ) y^{\prime } = 0 \]

21714

\[ {} x -2 y+1+\left (4 x -3 y-6\right ) y^{\prime } = 0 \]

21715

\[ {} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0 \]

21716

\[ {} \left (x -1\right )^{2} y^{\prime \prime }-4 \left (x -1\right ) y^{\prime }-14 y = x^{3}-3 x^{2}+3 x -8 \]

21717

\[ {} y^{\prime \prime }+2 y^{\prime }+\left (1-\frac {2}{\left (3 x +1\right )^{2}}\right ) y = 0 \]

21718

\[ {} x^{2} u^{\prime \prime }-3 u^{\prime } x +13 u = 0 \]

21719

\[ {} y^{\prime } = \frac {y+x^{2}+y^{2}}{x} \]

21720

\[ {} \sin \left (x \right )^{2} y^{\prime \prime }+\tan \left (x \right ) y^{\prime }-k^{2} \cos \left (x \right )^{2} y = 0 \]

21721

\[ {} x^{2} \cos \left (x \right ) y^{\prime \prime }+\left (x \sin \left (x \right )-2 \cos \left (x \right )\right ) \left (x y^{\prime }-y\right ) = 0 \]

21722

\[ {} y^{\prime }+x \left (y-x \right )+x^{3} \left (y-x \right )^{2} = 1 \]

21723

\[ {} y^{\prime } = \sin \left (x +y\right ) \]

21724

\[ {} \frac {x^{2}}{y}+y^{2}-\left (\frac {x^{3}}{y^{2}}+x y+y^{2}\right ) y^{\prime } = 0 \]

21725

\[ {} \left (1-\frac {1}{x}\right ) u^{\prime \prime }+\left (\frac {2}{x}-\frac {2}{x^{2}}-\frac {1}{x^{3}}\right ) u^{\prime }-\frac {u}{x^{4}} = \frac {2}{x}-\frac {2}{x^{2}}-\frac {2}{x^{3}} \]

21726

\[ {} y+\left (1+y^{2} {\mathrm e}^{2 x}\right ) y^{\prime } = 0 \]

21727

\[ {} x y^{\prime \prime }+\left (x +3\right ) y^{\prime }+2 y = 0 \]

21728

\[ {} \left (x +2\right ) y^{\prime \prime }+{y^{\prime }}^{2} = 1 \]

21729

\[ {} \frac {{y^{\prime \prime }}^{2}}{{y^{\prime }}^{2}}+\frac {y y^{\prime \prime }}{y^{\prime }}-y^{\prime } = 0 \]

21730

\[ {} \left (x^{2}-x \right ) y^{\prime \prime }+\left (2 x^{2}+4 x -3\right ) y^{\prime }+8 x y = 1 \]

21731

\[ {} x^{2} y^{\prime \prime }+7 x y^{\prime }+8 y = 0 \]

21732

\[ {} n \left (n +1\right ) y-2 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

21733

\[ {} x^{2} y^{\prime \prime }-2 x y^{\prime }+2 y = 0 \]

21734

\[ {} y^{\prime \prime }+2 b y^{\prime }+y = k \]

21735

\[ {} m y^{\prime \prime }+a y^{\prime }+k y = 0 \]

21736

\[ {} y^{\prime \prime }+\omega ^{2} y = 0 \]

21737

\[ {} \theta ^{\prime \prime }+4 \theta = 15 \cos \left (3 t \right ) \]

21738

\[ {} y^{\prime } = \alpha \left (A -y\right ) y \]

21739

\[ {} [y^{\prime }\left (t \right ) = 2 y \left (t \right )-5 z \left (t \right ), z^{\prime }\left (t \right ) = 4 y \left (t \right )-2 z \left (t \right )] \]

21740

\[ {} y^{\prime \prime }+4 y = 0 \]

21741

\[ {} y^{\prime }-k y = A \]

21742

\[ {} L i^{\prime }+R i = E_{0} \]

21743

\[ {} x^{2} y^{\prime \prime }+2 y^{\prime }+x y = 0 \]

21744

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

21745

\[ {} 2 x^{2} y^{\prime \prime }+7 x \left (1+x \right ) y^{\prime }-3 y = 0 \]

21746

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y = 0 \]

21747

\[ {} \left (x^{2}-4\right ) y^{\prime \prime }+y = 0 \]

21748

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

21749

\[ {} \left (x -1\right ) y^{\prime \prime }+x y^{\prime }+\frac {y}{x} = 0 \]

21750

\[ {} \left (x -1\right ) y^{\prime \prime }+x y^{\prime }+\frac {y}{x} = 0 \]

21751

\[ {} \left (x -1\right ) y^{\prime \prime }+x y^{\prime }+\frac {y}{x} = 0 \]

21752

\[ {} y^{\prime \prime }+x y = 0 \]

21753

\[ {} y^{\prime }-y = 0 \]

21754

\[ {} y^{\prime \prime }+x y^{\prime }+\left (x^{2}+2\right ) y = 0 \]

21755

\[ {} x^{2} y^{\prime \prime }+y^{\prime }+y = 0 \]

21756

\[ {} x^{2} y^{\prime \prime }+4 x y^{\prime }+2 y = 0 \]

21757

\[ {} y^{\prime \prime } = x y^{2}-y^{\prime } \]

21758

\[ {} x^{\prime \prime }-s x = 0 \]

21759

\[ {} y^{\prime \prime }+y = 0 \]

21760

\[ {} y^{\prime } = x^{2} \]

21761

\[ {} y^{\prime } = y \]

21762

\[ {} y^{\prime \prime }+y = 0 \]

21763

\[ {} 4 y+y^{\prime \prime } = 0 \]

21764

\[ {} 2 y-x y^{\prime }+y^{\prime \prime } = 0 \]

21765

\[ {} y^{\prime \prime }-x y^{\prime }-y = 0 \]

21766

\[ {} -4 y-6 x y^{\prime }+\left (-x^{2}+1\right ) y^{\prime \prime } = 0 \]

21767

\[ {} \left (x^{2}+4\right ) y^{\prime \prime }+x y = x +2 \]

21768

\[ {} y^{\prime \prime }-\left (x -2\right ) y^{\prime }+2 y = 0 \]

21769

\[ {} y^{\prime \prime }+\left (x -1\right )^{2} y^{\prime }-4 \left (x -1\right ) y = 0 \]

21770

\[ {} y^{\prime \prime }+\left (x -1\right ) y = {\mathrm e}^{x} \]

21771

\[ {} \left (x^{2}+2\right ) y^{\prime \prime }+\left (2 x +\frac {2}{x}\right ) y^{\prime }+2 x^{2} y = \frac {4 x^{2}+2 x +10}{x^{4}} \]

21772

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

21773

\[ {} -2 y+2 x y^{\prime }+\left (x^{2}+1\right ) y^{\prime \prime } = 0 \]

21774

\[ {} y^{\prime \prime }+x y^{\prime }+\left (2 x -1\right ) y = 0 \]

21775

\[ {} \left (x^{2}-1\right ) y^{\prime \prime }+3 x y^{\prime }+x y = 0 \]

21776

\[ {} y^{\prime \prime }+x y = 0 \]

21777

\[ {} \left (-x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+\lambda \left (\lambda +1\right ) y = 0 \]

21778

\[ {} -b y a +\left (c -\left (1+a +b \right ) x \right ) y^{\prime }+\left (1-x \right ) x y^{\prime \prime } = 0 \]

21779

\[ {} y^{\prime \prime }+x y^{\prime }+\left (2 x -1\right ) y = 0 \]

21780

\[ {} \cos \left (x \right ) u^{\prime \prime }+\sin \left (x \right ) u^{\prime }+\left (\cos \left (x \right )+\sin \left (x \right )\right ) u = 0 \]

21781

\[ {} x^{\prime }+x^{2} = 0 \]

21782

\[ {} y^{\prime \prime } = y^{2} {\mathrm e}^{x}-{y^{\prime }}^{2} \]

21783

\[ {} y^{\prime \prime }+3 y^{\prime }+\left (-x^{2}+1\right ) y = \frac {-x^{2}+x}{1+x} \]

21784

\[ {} x \left (x -1\right )^{2} \left (x +2\right ) y^{\prime \prime }+x^{2} y^{\prime }-\left (x^{3}+2 x -1\right ) y = 0 \]

21785

\[ {} x^{4} \left (x^{2}+1\right ) \left (x -1\right )^{2} y^{\prime \prime }+4 x^{3} \left (x -1\right ) y^{\prime }+\left (1+x \right ) y = 0 \]

21786

\[ {} y^{\prime \prime }+p \left (x \right ) y^{\prime }+q \left (x \right ) y = 0 \]

21787

\[ {} x^{2} y^{\prime \prime }+x \,{\mathrm e}^{x} y^{\prime }+\left (x^{3}-1\right ) y = 0 \]

21788

\[ {} 8 x^{2} y^{\prime \prime }+10 x y^{\prime }+\left (x -1\right ) y = 0 \]

21789

\[ {} -y+y^{\prime } \left (1+x \right )+2 \left (1-x \right ) x y^{\prime \prime } = 0 \]

21790

\[ {} 4 x y^{\prime \prime }+2 y^{\prime }-y = 0 \]

21791

\[ {} y^{\prime \prime }+\frac {y^{\prime }}{2 x}+\frac {y}{4 x} = 0 \]

21792

\[ {} x^{2} y^{\prime \prime }+\left (\frac {1}{2} x +x^{2}\right ) y^{\prime }+x y = 0 \]

21793

\[ {} 18 x^{2} y^{\prime \prime }+3 x \left (x +5\right ) y^{\prime }-\left (10 x +1\right ) y = 0 \]

21794

\[ {} 2 x^{2} y^{\prime \prime }+7 x \left (1+x \right ) y^{\prime }-3 y = 0 \]

21795

\[ {} 3 x^{2} y^{\prime \prime }-x y^{\prime }+y = 0 \]

21796

\[ {} x^{2} y^{\prime \prime }+\left (x^{2}-2 x \right ) y^{\prime }+2 y = 0 \]

21797

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+\left (x^{2}-\frac {1}{4}\right ) y = 0 \]

21798

\[ {} x^{2} y^{\prime \prime }+2 x y^{\prime }+\left (x^{2}-2\right ) y = 0 \]

21799

\[ {} x^{2} y^{\prime \prime }+x y^{\prime }+y \left (x^{2}-1\right ) = 0 \]

21800

\[ {} x^{2} y^{\prime \prime }-\left (x +4\right ) y^{\prime }+2 y = 0 \]